
CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

Single-cell RNA-seq data analysis
using Chipster

Summer 2023

Eija Korpelainen, Maria Lehtivaara, Iida Hakulinen



Instructions for Zoom and questions

• Questions

oWrite your questions in the course doc https://bit.ly/scrnaseq2023

• Zoom

oWhen you are not talking, please keep your mic muted

oYou can find all the controls (mic, video, chat, screen sharing) at the bottom of the Zoom window

oPlease use a headset to avoid the echo
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https://bit.ly/scrnaseq2023


What will I learn?

• Analysis of single-cell RNA-seq data

oFind subpopulations (clusters) of cells and marker genes for them

oCompare multiple samples (e.g. treatment vs control)

o Identify cell types that are present in both samples

oObtain cell type markers that are conserved in both samples

oCompare the samples to find cell-type specific responses to treatment

• How to operate the Chipster software
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Introduction to Chipster



• User-friendly analysis software for high-throughput data

• Provides an easy access to over 500 analysis tools

• Command line tools

• R/Bioconductor packages

• Free, open source software

• What can I do with Chipster?
o analyze high-throughput data

o visualize data efficiently

o share analysis sessions

Chipster



Chipster website (https://chipster.csc.fi/)



Chipster user interface (chipster.rahtiapp.fi)



Workflow view

• Shows the relationships of the files

• You can move the boxes (files) around, and zoom in and out.

• Several files can be selected by 
o keeping the Ctrl/Cmd key down

o drawing a box around them

• Right clicking a file allows you to 
o Download (”Export”)  

o Delete

o Rename

o View history

o Select descendants

o Convert to Chipster format (for tables)

o Define samples (for FASTQ files)



Options for importing data to Chipster

• Add file button
o Upload files
o Upload folder
o Download from URL

• Sessions tab
o Import session file

• Tools
o Import from Illumina BaseSpace

o Utilities / Retrieve data from Illumina BaseSpace
o Access token needed

o Import from SRA database
o Utilities / Retrieve FASTQ or BAM files from SRA

o Import from Ensembl database
o Utilities / Retrieve data for a given organism in Ensembl

o Import from URL
o Utilities / Download file from URL directly to server



Analysis sessions

• Your analysis is saved automatically in the cloud

oSession includes all the files, their relationships and metadata (what tool and parameters were 
used to produce each file).

oSession is a single .zip file. 

oNote that cloud sessions are not stored forever! Remember to download the session when ready.

• You can share sessions with other Chipster users

oYou can give either read-only or read-write access

• If your analysis job takes a long time, you don’t need to keep Chipster open: 

oWait that the data transfer to the server has completed (job status = running)

oClose Chipster

oOpen Chipster later and the results will be there



Running many analysis jobs at the same time

• You can have many analysis jobs running at the same time
o No need to wait that one finishes before starting a new one 

Run button gives several options:

• Run tool
o Runs the selected analysis tool once

• Run tool for each file
o Runs the selected analysis tool for each of the input files individually

• Run tool for each sample
o If you have grouped paired end FASTQ files to samples using the Define samples –option, you can run 

the selected analysis tool for the input files in a sample specific manner.



Problems? Send us a support request
-request includes the error message and link to analysis session (optional)



More info

● chipster@csc.fi

● http://chipster.csc.fi

● Chipster tutorials in YouTube

● https://chipster.csc.fi/manual/courses.html



Acknowledgements to Chipster users and contibutors

Users’ feedback and ideas have helped us to shape the software over the years. 
Let us know what needs to be improved!



Introduction to single-cell RNA-seq data analysis



What will you learn

1. How does scRNA-seq work and what can go wrong

oEmpties, doublets and dropouts

oWhat is a UMI and why do we use them

2. Why is scRNA-seq data challenging to analyze

3. What are the main analysis steps for clustering cells and finding cluster marker genes

4. What is Seurat
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Single cell RNA-seq

• Relatively new technology, data analysis methods are actively developed

• Gene expression profiling at single cell level has many applications

ocell type detection, cellular differentiation processes, tumor heterogeneity and response to drugs, etc

• Many technologies for capturing single cell transcriptomes

oDroplet-based (e.g. 10X Chromium, Drop-seq), plate-based and well-based

• Libraries are usually 3’ tagged: only a short sequence at the 3’ end of the mRNA is 

sequenced
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Bead: Cell barcode and unique molecular identifiers (UMIs)

Figure by Macosko et al, Cell, 161:1202-1214, 2015

• Cell barcode: which cell the read comes from

• UMI: which mRNA molecule the read comes 

from (helps to detect PCR duplicates) 



From reads to digital gene expression matrix (DGE)

28.5.202328
Figure by Macosko et al, Cell, 161:1202-1214, 2015



What can go wrong?

1. Ideally there is one healthy cell in the droplet. However, sometimes

oThere is no cell in the droplet, just ambient RNA

→Remove “empties” based on the small number of genes expressed

oThere are two (or more) cells in a droplet

→ Remove doublets (and multiplets) based on the large number of genes expressed

o The cell in the droplet is broken/dead

→ Remove dead cells based on high percentage of mitochondrial transcripts

2. Sometimes barcodes have synthesis errors in them, e.g. one base is missing

→Check the distribution of bases at each position and fix the barcode or remove the cell
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Single-cell RNA-seq data is challenging

• High number of dropouts

oA gene is expressed but the expression is not detected due to technical limitations → the detected 
expression level for many genes is zero 

• Data is noisy. High level of variation between the cells due to

oCapture efficiency (percentage of mRNAs captured)

oReverse transcription efficiency

oAmplification bias (non-uniform amplification of transcripts)

oSignificant differences in sequencing depth (number of UMIs/cell) 

oCell size and cell cycle stage

• Complex distribution of expression values

oCell heterogeneity and the abundance of zeros give rise to multimodal distributions

→Analysis methods for bulk RNA-seq data don’t work for single cell RNA-seq
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Analysis steps for clustering cells and finding cluster marker genes

1. Check the quality of cells, filter genes

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (UMAP or tSNE) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202332



Seurat

• One of the most popular R packages for scRNA-seq data analysis

• Provides tools for all the steps mentioned in the previous slide

oAlso tools for integrative analysis

• Stores data in Seurat object

oContains specific slots for different types of data like counts, PCA and 
clustering results, etc

• http://satijalab.org/seurat
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Detail from La Parade (1889) by Georges Seurat



Analysis steps for clustering cells and finding marker genes

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202335



What will you learn

1. What kind of input files can be used

2. What is the structure of 10X Genomics matrix file

3. How to filter out genes

4. How to check the quality of cells and filter out bad ones

28.5.202336



What kind of files can I give as input to Chipster?

1. 10X Genomics MEX format 

oThree files are needed: barcodes.tsv, features.tsv (genes.tsv ) and matrix.mtx

o the files need to be named exactly like this

oYou need  to put the files in a tar package (use Chipster tool “Utilities / Make a Tar package”)

oMEX = Market Exchange Format

2. 10X Genomics HDF5 format

o Hierarchical Data Format (HDF5 or H5) is a binary format that can compress and access data much 
more efficiently than text formats such as MEX, so it is especially useful for large datasets.

3. DGE matrix from the DropSeq tools

oDGE matrix made in Chipster, or import a ready-made DGE matrix (.tsv file)

• Check that the input file is correctly assigned!
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What do the 10X files contain?

1. matrix.mtx

o Number of UMIs for a given gene in a given cell

o Sparse matrix (only non-zero entries are stored), in MEX format

o Header: third line tells how many genes and cells you have

o Each row: gene index, cell index, number of UMIs

o Make sure that you use the filtered feature barcode matrix 
(contains only those cell barcodes which are present in your data) 

2. barcodes.tsv

oCell barcodes present in your data

3. features.tsv (genes.tsv)

o Identifier, name and type (gene expression)

28.5.202338

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices

32709
32710
32711
…

1
2
3
…



Setting up a Seurat object, filtering genes

• Give a name for the project (used in some plots)

• Filtering genes

oKeep genes which are expressed (= detected) in at least this number of cells

• Sample or group name

o If you have several samples 

• Input files

oAssign correctly!
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Output files

• Seurat object (Robj) that Seurat-based tools use to store data

oContains specific slots for different types of data, you use this file as input for the next analysis tool 

oYou cannot view the contents of Robj in Chipster (you can import it to R)

• Pdf file with quality control plots and cell number info

onFeature_RNA = number of expressed genes in a cell 

onCount_RNA = number of transcripts in a cell 

opercent.mt= percentage of mitochondrial transcripts

28.5.202340



How to detect empties, multiplets and broken cells?

• Empty = no cell in droplet: low gene count (nFeature_RNA < 200)

• Doublet/multiplet = more than one cell in droplet: large gene count (nFeature_RNA > 2500)

• Broken/dead cell in droplet: lot of mitochondrial transcripts (percent.mt > 5%)

28.5.202341

multiplets

empties

dead/broken cells

expressed genes / cell UMIs (transcripts) / cell percentage of mitochondrial transcripts / cell



Scatter plots for quality control

• nCount_RNA vs percent.mt: are there cells with low number of transcripts and high mito%

• nCount_RNA vs nFeature_RNA: these should correlate. 

28.5.202342
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Parameters for filtering out bad quality cells
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Quality control using the Scater package

• R/Bioconductor package for quality control and visualization of 

scRNA-seq data

• Scater object differs from Seurat object, but Chipster can handle 

the conversion

• The Chipster tool Scater QC produces several quality control plots 

oSeparate video explaining them

28.5.202344



Analysis steps for clustering cells and finding marker genes

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202345



What will you learn

1. Why do we need to normalize gene expression values

2. What is a dropout

3. What does global scaling normalization do

4. When does it not work well
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Normalizing scRNA-seq gene expression values

• We cluster cells based on differences in their gene expression profiles

• Variance of gene expression values should reflect biological variation across cells

→We need to remove non-biological variation

• Single-cell gene expression values are noisy

oLow mRNA content in a cell

oVariable mRNA capture

oVariable sequencing depth

• Normalization methods for bulk RNA-seq data don’t work for single cell data

odropouts = genes whose expression is not detected → lot of zeros
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Global scaling normalization

• Divide gene’s UMI count in a cell by the total number of UMIs in that cell

• Multiply the ratio by a scale factor (10,000 by default)

oThis scales each cell to this total number of transcripts

• Transform the result by taking natural log

28.5.202348



Parameters for normalization
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Global scaling normalization: problem with high expressing genes

• Sequencing depth (number of UMIs per cell) varies significantly between cells
• Normalized expression values of a gene should be independent of sequencing depth

• The global scaling normalization works only for low to medium expressing genes 

28.5.202350

oExpression values of high expressing 
genes correlate with sequencing depth

oSCTransform can deal with this better

oHafemeister (2019): 
Normalization and variance 
stabilization of single-cell RNA-
seq data using regularized 
negative binomial regression



SCTransform – alternative approach to normalization etc

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202351

SCTransform



SCTransform: modeling framework for normalization and variance 
stabilization

28.5.202353

• Sequencing depth (number of UMIs per cell) varies significantly between cells

• Normalized expression values of a gene should be independent of sequencing depth

• The default log normalization works ok only for low to medium expressing genes 

oFor high expressing genes the normalized expression values correlate with sequencing depth

oHigh expressing genes show disproportionally high variance in cells with low sequencing depth

• SCTransform models gene expression as a function of sequencing depth using GLM 

oConstrains the model parameters through regularization, by pooling information across genes which are 
expressed at similar levels

oNormalized expression values = Pearson residuals from regularized negative binomial regression

o Pearson residual = response residual devided by the expected standard deviation (effectively VST)

o Positive residual for a given gene in a given cell indicate that we observed more UMIs than expected given 
the gene’s average expression in the population and the cellular sequencing depth 



Normalization using Pearson residuals works best
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Hafemeister (2019): Normalization and variance stabilization of single-cell RNA-seq data using regularized negative 
binomial regression



Parameters for SCTransform

28.5.202355



SCTransform: things to take into account in analysis

28.5.202356

• When the data is normalized with SCTransform, it is recommended to set

o In normalization: Number of highly variable genes = 3000 (instead of 2000)

o In PCA: Number of PCs to compute = 50 (instead of 20)

o In clustering: Number of principal components to use = 30 (instead of 10), resolution = 0.8 (instead of 0.5)

• Why do we use a different number of highly variable genes and PCs when the data has 

been normalized with SCTransform? 

oSCTransform does a better job in normalization (variation in sequencing depth is not a confounding 
factor any more) → additional variable features are less likely to be driven by technical differences across 
cells, and instead may represent more subtle biological variability



Analysis steps for clustering cells and finding marker genes

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202358



What will you learn

1. Why do we need to find highly variable genes

2. What kind of mean-variance relationship is there in scRNA-seq data

3. Why do we need to stabilize the variance of gene expression values
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Selecting highly variable genes

• We want to cluster cells, so we need to find genes whose expression varies across the cells

oHighly variable genes are used for PCA, and the PCs are used for clustering

• We cannot select genes based on their variance, because scRNA-seq data has strong 

mean-variance relationship

o low expressing genes have higher variance

→ variance needs to be stabilized first
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Variance stabilizing transformation (VST)

• Compute the mean and variance for each gene using the unnormalized UMI counts

• Take log10 of mean and variance

• Fit a curve to predict the variance of each gene as a function of its mean expression

• Standardized count = (expressiongeneXcellY – mean expressiongeneX) / predicted SDgeneX

oreduce the impact of technical outliers: set the max of standardized counts to the square root of 
number of cells  

• For each gene, compute the variance of the standardized values across all cells 

→ Rank the genes based on their standardized variance and use the top 2000 genes for 

PCA and clustering
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Detection of highly variable genes: plots

28.5.202362

Names for the top10 highly 
variable genes



Parameter for detecting variable genes
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Analysis steps for clustering cells and finding marker genes

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202364



What will you learn

1. Why do we need to scale data prior to PCA

2. How is scaling done

3. How can we remove unwanted sources of variation
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Scaling expression values prior to dimensional reduction

• Standardize expression values for each gene across all cells prior to PCA

oThis gives equal weight in downstream analyses, so that highly expressed genes do not dominate

• Z-score normalization in Seurat’s ScaleData function

oShifts the expression of each gene, so that the mean expression across cells is 0

oScales the expression of each gene, so that the variance across cells is 1

• ScaleData has an option to regress out unwanted sources of variation

oE.g. cells might cluster according to their cell cycle state rather than cell type
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Regress out unwanted sources of variation

• Several sources of uninteresting variation

otechnical noise

obatch effects

ocell cycle stage, etc

• Removing this variation improves downstream analysis 

• Seurat constructs linear models to predict gene expression based on user-defined variables 

onumber of detected transcripts per cell, mitochondrial transcript percentage, batch,…

ovariables are regressed individually against each gene, and the resulting residuals are scaled and centered 

oscaled z-scored residuals of these models are used for dimensionality reduction and clustering

o In Chipster the following effects are removed:

o number of detected molecules per cell

omitochondrial transcript percentage

o cell cycle stage (optional)
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Parameter for regressing out unwanted sources of variation
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Mitigating the effects of cell cycle heterogeneity

1. Compute cell cycle phase scores for each cell based on its expression of 
G2/M and S phase marker genes 

oThese markers are well conserved across tissues and species

oCells which do not express markers are considered not cycling, G1

2. Model each gene’s relationship between expression and the cell cycle 
score

3. Two options to regress out the variation caused by different cell cycle 
stages 

1. Remove ALL signals associated with cell cycle stage

2. Remove the DIFFERENCE between the G2M and S phase scores.

o This preserves signals for non-cycling vs cycling cells, only the 
difference in cell cycle phase amongst the dividing cells are removed. 
Recommended when studying differentiation processes 
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Regressing out the variation caused by different cell cycle stages 

PCA on cell cycle genes (dot = cell, colors = phases)

28.5.202370

S =DNA synthesis

G1 = not cycling

G2/M =  mitosis

G1 = not cycling S + G2/M
= cycling



Analysis steps for clustering cells and finding marker genes

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202371



What will you learn

1. Why do we need to do dimensional reduction?

2. How dimensional reduction methods (PCA, tSNE, UMAP) work on intuitive 

level

3. Why we use both PCA and tSNE/UMAP?

4. How to select the principal components for the clustering step
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Dimensionality reduction

28.5.202373

• What for?

1. Making clustering step easier (PCA)

2. Visualization (tSNE, UMAP)

• Simplifies complexity so that the data becomes easier to work with

oCells are characterized by the expression values of all the genes → thousands of dimensions

oWe have thousands of genes and cells

• Removes redundancies in the data

oThe expression of many genes is correlated, we don’t need so many dimensions to distinguish cell types

• Identifies the most relevant information in order to cluster cells

oOvercomes the extensive technical noise in scRNA-seq data

• Can be linear (e.g. PCA) or non-linear (e.g. tSNE, UMAP)



Principal Component Analysis (PCA)
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• Finds principal components (PCs) of the data 

oDirections where the data is most spread out = where there is most variance

oPC1 explains most of the variance in the data, then PC2, PC3, …

• We will select the most important PCs and use them for clustering cells

o Instead of 20 000 genes we have now maybe 10 PCs

oEssentially, each PC represents a robust ‘metagene’ that combines information across a correlated 
gene set

• Prior to PCA we scaled the data so that genes have equal weight in downstream 

analysis and highly expressed genes don’t dominate

oShift the expression of every gene so that the mean expression across cells is 0 and the variance 
across cells is 1. 



Slide by Paulo Czarnewski

• PC1 explains 98% of 
the variance

• => PC1 represents 
these two genes very 
well

• PC2 is nearly 
insignificant, and could 
be disregarded

• In real life, thousands 
of genes, and maybe 
tens of PCs



Visualizing PCA results: loadings
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• Visualize top genes associated with principal components 

o= Which genes are important for PC1? 

• Is the correlation direct (positive) or reverse (negative)? 



Visualizing PCA results: heatmap
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• Which genes correspond to separating cells?

oCheck if there are cell cycle genes

• Both cells and genes are ordered according to 

their PCA scores. Plots the extreme cells on both 

ends of the spectrum



Visualizing PCA results: PCA plot
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• Gene expression patterns will be 

captured by PCs → PCA can separate cell 

types

• Note that PCA can also capture other 

things, like sequencing depth or cell 

heterogeneity/complexity!

A dot = cell
Expression of variable genes used as input data



Determine the significant principal components

• It is important to select the significant PCs for clustering analysis

• However, estimating the true dimensionality of a dataset is challenging

• Seurat developers: 

oTry repeating downstream analyses with a different number of PCs (10, 15, or even 50!). 

o The results often do not differ dramatically.

oRather choose higher number. 

o For example, choosing 5 PCs does significantly and adversely affect results

• Chipster provides the following plots to guide you selecting the significant PCs:

oElbow plot

oPC heatmaps
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How much variance 
each PC explains?

Gaps?

Plateau?

Elbow plot

• The elbow in the plot tends to 

reflect a transition from 

informative PCs to those that 

explain comparatively little 

variance. 
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Principal component heatmaps

• Check if there is still a difference 

between the extremes

• Exclude also PCs that are driven 

primarily by uninteresting genes (cell 

cycle, ribosomal or mitochondrial)
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Other dimension reduction methods: used later for visualisation

• Graph-based, non-linear methods 

like tSNE and UMAP

• PCA, tSNE and UMAP available as 

options in most tools

• We use PCA for dimension 

reduction before clustering, and 

tSNE or UMAP for visualisation

28.5.202382

Image by Shigeo Takahashi et al, http://web-ext.u-aizu.ac.jp/~shigeo/research/manifold/



tSNE simplified
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• Graph-based

• Non-linear

• Stochastic

• (Only) local distances 

preserved: distance between 

groups are not meaningful

• Gold standard

• Can be run on top of PCs

• Many parameters to optimize

Example: From 2D to 1D

Iteration

Iteration

Iteration

Slide modified from Paulo Czarnewski’s slides, image based on StatQuest



UMAP

• Non-linear graph-based dimension reduction method like tSNE

• Newer & efficient = fast

• Runs on top of PCs

• Based on topological structures in multidimensional space

• Unlike tSNE, you can compute the structure once (no randomization) 
o => faster

o => you could add data points without starting over

• Preserves the global structure better than tSNE

• More info: video 6 at bit.ly/scRNA-seq

oDimensionality reduction explained by Paulo Czarnewski
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Analysis steps for clustering cells and finding marker genes

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202385



What will you learn

1. Why is clustering a bit complex step?

2. What happens in the clustering step?

3. How to visualise the clusters
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Clustering

• Divides cells into distinct groups  based on gene expression

• Our data is big and complex (lot of cells, genes and noise), so we use principal 

components instead of genes. We also need a clustering method that can cope 

with this.

→Graph-based clustering

→Shared nearest neighbor approach

→Graph cuts by Louvain method
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1. Identify k nearest neighbours of each cell

oEuclidean distance in PC space

2. Rank the neighbours based on distance

3. Build the graph: add an edge between cells if 

they have a shared nearest neigbour (SNN)

oGive edge weights based on ranking

4. Cut the graph to subgraphs (clusters) by

optimizing modularity

oLouvain algorithm by default

28.5.202388

Graph based clustering in Seurat

1. KNN

k=3
(30 in reality)

3. Graph (SNN)

edge

edge



Clustering parameters
• Number of principal components to 

use

• Experiment with different 
values

• If you are not sure, use a higher 
number

• Resolution for granularity 

• Increasing the value leads to 
more clusters 

• Values 0.4 - 1.2 typically return 
good results for single cell 
datasets of around 3000 cells

• Higher resolution is often 
optimal for larger datasets
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Change this, if you used SCTransform

Change this, if you have small data:



Visualization of clusters: tSNE or UMAP 

• tSNE/UMAP plot is gray by default, we color it by 

clustering results from the previous step

oCheck how well the groupings found by tSNE/UMAP 
match with cluster colors

• Input data: same PCs as for the clustering

• 2 parameters:
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tSNE plot for cluster visualization
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• t-distributed Stochastic Neighbor Embedding

• Graph-based non-linear dimensional reduction

oDifferent transformations to different regions

• Specialized in local embedding

oDistance between clusters is not meaningful

ohttps://distill.pub/2016/misread-tsne/

• Perplexity = number of neighbors to consider

oDefault 30, lower for small datasets

https://distill.pub/2016/misread-tsne/


UMAP plot for cluster visualization

• UMAP = Uniform Manifold Approximation and 

Projection

• Non-linear graph-based dimension reduction 

method like tSNE

oPreserves more of the global structure than tSNE
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Analysis steps for clustering cells and finding marker genes

1. Create Seurat object, filter genes, check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Visualize clusters with non-linear dimensional reduction (tSNE or UMAP) using the PCs

10. Detect and visualize marker genes for the clusters
28.5.202394



What will you learn

1. What is a marker gene

2. What aspects of scRNA-seq data complicate differential expression analysis

3. Why do we want to filter out genes prior to statistical testing
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Marker gene for a cluster

• Differentially expressed between the cluster and all the other cells
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Differential expression analysis of scRNA-seq data

• Challenging because the data is noisy

o low amount of mRNA → low counts, high dropout rate, amplification biases 

ouneven sequencing depth

• Non-parametric tests, e.g. Wilcoxon rank sum test (Mann-Whitney U test)

oCan fail in the presence of many tied values, such as the case for dropouts (zeros) in scRNA-seq

• Methods specific for scRNA-seq, e.g. MAST

oTake advantage of the large number of samples (cells) for each group

oMAST accounts for stochastic dropouts and bimodal expression distribution

• Methods for bulk RNA-seq, e.g. DESeq2

oBased on negative binomial distribution, works ok for UMI data. 

oNote: you should not filter genes, because DESeq2 models dispersion by borrowing information from 
other genes with similar expression level

oVery slow! Use only for comparing 2 clusters
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Filtering out genes prior to statistical testing – why?

• We test thousands of genes, so it is possible that we get good p-values 

just by chance (false positives) 

→Multiple testing correction of p-values is needed

oThe amount of correction depends on the number of tests (= genes) 

oBonferroni correction: adjusted p-value = raw p-value * number of genes tested

o If we test less genes, the correction is less harsh → better p-values

• Filtering also speeds up testing
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Detection of cluster marker 
genes

• Limit testing to genes which

oare expressed in at least this 
fraction of cells in either of the 
two groups (default 10%)

oshow at least this log2 fold 
change between the two 
groups (default 0.25)

28.5.2023102

Find all markers = you get 
a big table with all the clusters 
compared to all the other cells

OR
Compare cluster of interest to all 
others or to another cluster



Cluster marker gene result table 

• p_val = p-value

• p_val_adj = p-value adjusted using the Bonferroni method

• avg_logFC = log2 fold change between the groups

• cluster = cluster number

• pct1 =  percentage of cells where the gene is detected in the first group
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How to filter the gene list?

• You can filter the result table for example based on the adjusted p-value column 

using the tool Utilities / Filter table by column value using the following 

parameters:
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How to retrieve marker genes for a particular cluster?

• If you had set Find all markers = TRUE, the result table contains marker genes for 

all the clusters

• You can filter the result table based on the cluster column using the tool Utilities / 

Filter table by column value using the following parameters
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Visualize cluster marker genes

• UMAP, tSNE or PCA plot colored with marker gene expression

• Violin plot 

• Ridge plot
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Tool “Visualize genes”

• UMAP, tSNE or PCA plot colored with marker gene expression

• Violin plot 

• Ridge plot
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Result tables

28.5.2023110

• Gene’s average expression level in each cluster

• Percentage of cells expressing the gene in each cluster



Extract information from Seurat object

• Access single-cell RNA-seq data stored in the Seurat object

oThe object consists of specific data slots that contain more data slots

- Accessing information can be tricky

o With this tool, you can for example check what your downloaded scRNA-seq 
dataset includes or whether it has already been normalised with SCTransform or 
the global-scaling normalisation
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• Text file including the different 

slots in the object such as the 

counts and assays

• Table of the meta data data frame 

containing additional information 

associated with the cells or 

features of the object

Result tables
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SingleR annotations to clusters

• SingleR is an automatic annotation method for 

scRNA-seq data

• Labels cells from the query dataset based on 

similarity to the reference dataset with known labels

• The CellDex reference package provides access to 

several reference datasets (mostly derived from bulk 

RNA-seq or microarray data) through dedicated 

retrieval functions -> sometimes, connection issues

• User can select the CellDex package to be used as 

reference 

• Main level & fine level annotations
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Columns = cells

Ideally each cell 

should have 1 score 

that is obviously larger 

(=brighter color) than 

the rest, indicating 

that it is 

unambiguously 

assigned to a single 

label

SingleR annotation: QC plots
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Deltas = the difference between the score 

for the assigned label and the median 

across all labels for each cell

-> Low delta = uncertain assignment

SingleR annotation: QC plots

Pruned =

potentially poor-

quality or ambiguous 

assignments are 

removed based on 
the deltas



Rename clusters

• Based on previous knowledge and/or the SingleR results

• Import a table like this: 
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Integrated analysis of multiple samples
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What will you learn

1. What we need to consider when comparing samples

2. How to integrate samples

3. How to find conserved cluster marker genes

4. How to find differentially expressed genes between samples, within clusters

5. How to visualize interesting genes
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Goals of integrated analysis

• When comparing two samples, e.g. control and treatment, we want to 

o Identify cell types that are present in both samples

oObtain cell type markers that are conserved in both control and treated cells

oFind cell-type specific responses to treatment
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When comparing samples we need to correct for batch effects

28.5.2023121

• We need to find corresponding cells in the samples

oTechnical and biological variability can cause batch effects which make this difficult

• Several batch effect correction methods for single cell RNA-seq data available, e.g.

oSeurat v2: Canonical  correlation analysis (CCA) + dynamic time warping

oSeurat v3-v4: CCA + anchors

oMutual nearest neigbors (MNN)

oAnd more…



Analysis steps for integrated analysis

1. Create Seurat objects, filter genes, check the quality of cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes
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Integrated analysis: Setup, QC, filtering

• Perform the Seurat object setup, QC 

and filtering steps separately for the 

samples

oSame as before, just remember to name 
the samples, e.g. CTRL and STIM
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Analysis steps for integrated analysis

1. Create Seurat objects, filter genes, check the quality of cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes
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Canonical correlation analysis (CCA)

• Dimension reduction, like PCA

• Captures common sources of variation between two 

datasets

oAim: place datasets in a shared, low-dimensional space 

• Produces canonical correlation vectors, CCs

oEffectively capture correlated gene modules that are present 
in both datasets

oRepresent genes that define a shared biological space

• Why not PCA?

o It identifies the sources of variation, even if present only in 1 
sample (e.g. technical variation)

oWe want to integrate, so we want to find the similarities

28.5.2023125

Input:
Highly variable genes



Aligning two samples (Seurat v3/v4)

1. Canonical correlation 

analysis 

+ L2-normalisation of 

CCVs for scaling 

→ shared space

2. Identify pairs of 

mutual nearest 

neighbors (MNN) →

“anchors”

3. Filter & score anchors 

(based on 

neighborhood, in PC 

space)

4. Anchors + scores →

correction vectors
28.5.2023126

= cells in a shared 
biological state

= MNNs, one 
from each dataset

See the Seurat paper:
https://www.cell.com/cell/fulltext/S0092-8674(19)30559-8



Combine multiple samples tool

1. Identify  “anchors” for data integration

o Parameter: how many CCs to use in the neighbor search [20]

2. Integrate datasets together

o Parameter: how many PCs to use in the anchor weighting 
procedure [20]

28.5.2023129

Same question as before:
What is the dimensionality 
of the data?



Dimensionality –how many CCs / PCs to choose for downstream 
analysis?

• In the article* by Seurat developers, they “neglect to finely tune this parameter for 

each dataset, but still observe robust performance over diverse use cases”. 

oFor all neuronal, bipolar, and pancreatic analyses: dimensionality of 30.

oFor scATAC-seq analyses: 20. 

oFor analyses of human bone marrow: 50 

oThe integration of mouse cell atlases: 100

• Higher numbers: for significantly larger dataset and increased heterogeneity

28.5.2023130
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Integrated analysis of two samples –tools (v4)

1. Cluster cells

o As before

2. Visualize clustering  

o tSNE or UMAP, as a parameter

28.5.2023131



Larger datasets 1: Using reference samples in integration

• Why? 

oMemory and time savings (too long jobs are killed, and memory can run out)

oBy default, anchors are identified between all pairs of samples (i.e. for 10 samples, there are 
45 comparisons). 

• The "Samples to use as references" parameter allows users to list sample names 

to be used as integration references.

oUsers can type the reference sample names (separated with comma) 

oMake sure you type the sample name correctly, exactly like you typed it in the Setup tool!

oFor example, 10 samples, 1 reference -> 9 comparisons

• Select representative samples as references!

oFor example, if you have samples from male and female patients, pick one reference from 
both

28.5.2023132
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Large datasets 2: Anchor identification method (CCA -> rPCA)
• CCA = default

oMight lead to overcorrection, especially when large proportion of cells are non-overlapping

oRecommended when:

oWhen cell types are conserved, but there’s still big difference between the samples/experiments -> 
experimental condition/disease causes very strong expression shift

oCross-modality mapping

oCross-species mapping

• rPCA = reciprocal PCA

oFaster, more conservative: cells in different biological states are less likely to “align” 

oEach dataset is projected into the others PCA space and the anchors are constrained by the same 
mutual neighborhood requirement

oRecommended when:

oA substantial fraction of cells in one dataset have no matching type in the other

oDatasets originate from the same platform (i.e. multiple lanes of 10x Genomics)

o There are a large number of datasets or cells to integrate

28.5.2023133 https://satijalab.org/seurat/articles/integration_large_datasets.html
https://satijalab.org/seurat/articles/integration_rpca.html



Analysis steps for integrated analysis

1. Create Seurat objects, filter genes, check the quality of cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes
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Find conserved cluster marker genes in multiple samples 
• Conserved marker gene = marker for a given cluster in all samples

oGive cluster as a parameter

oCompares gene expression in cluster X vs all other cells

oThis is done in each sample, and then the p-values are combined using Wilkinson’s method

• Uses Wilcoxon rank sum test

• Parameters for filtering the table:

oOnly positive marker genes (default = TRUE)

oAdjusted p-value cutoff for conserved markers (default = 0.05, looks at the max_pval) 

oFold change threshold for conserved markers in log2 scale (default = 0.25)
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Find cell-type specific differentially expressed genes between samples

28.5.2023136

• We are now looking for differential expression between samples in one cluster

• Uses Wilcoxon rank sum test

• Parameters for filtering the table:

oAdjusted p-value cutoff for conserved markers (default = 0.05)

oFold change threshold for conserved markers in log2 scale (default = 0.25)

• If there are >2 samples, a table for each sample is given as output 

onamed: de-list_samplename1VsAllOthers.tsv, de-list_samplename2VsAllOthers.tsv…



Analysis steps for integrated analysis

1. Create Seurat objects, filter genes, check the quality of cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes
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Visualize interesting genes in split dot plot

• Size = the percentage of cells in a cluster expressing a given gene

• Brightness = the average expression level in the expressing cells in a cluster
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Visualize interesting genes in tSNE/UMAP plots

1. No change between the samples: conserved cell type markers

2. Change in all clusters: cell type independent marker for the treatment

3. Change in one/some clusters: cell type dependent behavior to the treatment
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1.

2.

3.

CTRL TREATED

Different 
marker genes



Visualize interesting genes in violin plots
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1. No change between the samples: 

conserved cell type markers

2. Change in all clusters: cell type 

independent marker for the 

treatment

3. Change in one/some clusters: cell 

type dependent behavior to the 

treatment


