

Visium data analysis using Chipster

Autumn 2022

Eija Korpelainen, Maria Lehtivaara lida Hakulinen

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICTosaamiskeskus

Introduction

Overview

- Intro to spatially resolved transcriptomics
- How does the Visium system work?
- Things to keep in mind when working with Visium data
- What will you learn during this course

Spatially resolved transcriptomics

- Spatial context: Gene expression data overlaid with a tissue image

 retains organization of tissue and cellular microenvironment
 cell type identification in the context of heterogeneous tissue
- Several technologies available

 \circ this course focuses on 10X Genomics Visium data

Visium – how does it work?

- Place tissue slice (frozen or FFPE) on a capture area on a slide
- Capture area contains about 5000 barcoded spots

 Spot diameter 55 um, center to center distance 100 um
 NOTE: about 1-10 cells per spot
- Stain, image, permeabilize cells
- cDNA synthesis
- Library construction

5

Visium data – things to remember

- Each spot typically includes several cells, not just one
- There can be different types of cells in a spot
- The gene expression values measured are an average from the cells in a spot
- Clusters represent a group of spots with **similar composition of cell types**

During this course you will learn how to

- Create a Seurat object and check the quality of spots o Filter out low quality spots (damaged tissue)
- Normalise gene expression values and identify highly variable genes
- Reduce dimensions with PCA using the highly variable genes
- Use the PCs to cluster spots with graph based clustering • Visualise clusters (UMAP and overlay with the tissue image)
- Detect spatially variable genes

 Visualise gene expression on the tissue image
- Subset anatomical regions
- Predict cell type composition in spots: Integrate with scRNA-seq data
- Integrate several samples

During this course you will learn how to

- Create a Seurat object and check the quality of spots o Filter out low quality spots (damaged tissue)
- Normalise gene expression values and identify highly variable genes
- Reduce dimensions with PCA using the highly variable genes
- Use the PCs to cluster spots with graph based clustering • Visualise clusters (UMAP and overlay with the tissue image)
- Detect spatially variable genes

 $\circ\,\mbox{Visualise}$ gene expression on the tissue image

- Subset anatomical regions
- Predict cell type composition in spots: Integrate with scRNA-seq data
- Integrate several samples

Setting up Seurat object

Input for the tool "Seurat – setup and QC"

- 10X Genomics output files (from Visium Space Ranger software):
 - o Filtered_feature_bc_matrix.h5 (= spot by gene expression matrix)
 - o Tissue_hires_image.png (= image of the tissue slice)
 - $\circ {\sf Tissue_lowres_image.png}$
 - o Scalefactors_json.json (= relate the high res image to low res)
 - Tissue_positions_list.csv (make sure that doesn't contain the column names) (= spot positions over the image)
- Make a tar package of these files

 \circ You can use the Chipster Utilities tool "Make a tar package" for this

- \rightarrow Seurat object containing spot-level expression data & the associated image of the tissue slice
- If you have multiple samples, do this for every sample

Quality control

QC violin plots produced by the Seurat setup tool

CSC

QC data plotted on tissue image

- nCount_Spatial: big differences in UMI counts per spot

 otechnical and biological reasons (tissue anatomy) → normalization required
- High percentage of mitochondrial reads near the edges, tears and folds of tissue

 damaged tissue

Filtering bad quality spots

You can filter spots prior to normalization

 Mitochondrial transcript percentage
 Hemoglobin transcript percentage

Seurat v4 -Filter spots, normalize with SCTransform and detect high-variance genes

Parameters		🔊 Reset All
Filter out spots which have higher mitochondrial transcript percentage Filter out spots from regions of damaged tissue. The spots to be kept must have lower percentage of mitochondrial transcripts than this.	20	$\hat{\cdot}$
Filter out spots which have higher hemoglobin transcript percentage Filter out spots which have higher percentage of hemoglobin transcripts than this.	20	$\hat{}$
Number of variable genes to return Number of features to select as top variable features, i.e. how many features returned. For SCTransform, the recommended default is 3000.	3000	$\hat{\cdot}$
Input files		

Seurat object

seurat_spatial_setup.Robj

 \sim

×

Normalisation

Normalising expression values across spots

- Sequencing depth (number of UMIs per cell) varies significantly between spots
- Normalized expression values of a gene should be independent of sequencing depth
- Variance can be substantial for spatial datasets
- Cell density varies across the tissue \rightarrow global scaling normalization doesn't work
- Use SCTransform
 - o Doesn't force the same "size"

SCTransform

- Models gene expression as a function of sequencing depth using GLM
 - Constrains the model parameters through regularization, by pooling information across genes which are expressed at similar levels
 - Normalized expression values = Pearson residuals from regularized negative binomial regression
- Works well also for high expressing genes
- In addition to normalization, identifies highly variable genes and scales data
- SCTransform v2 even better

CSC

Picture 1: https://satijalab.org/seurat/articles/spatial_vignette.html#data-preprocessing-2

Gene expression visualization

Overlay gene expression values on top of histology image

• If you want to see the tissue better you can modify

o point size

 \circ transparency of the points (spots with lower expression for gene X are more transparent)

Dimension reduction

Dimensionality reduction

original data space

Picture 1. Im, Jonas. "Introduction to PCA" Medium.com, 6th Dec. 2018,

https://medium.com/@jamesim2077/introduction-to-pca-principal-component-analysis-c26dffe2a857. Accessed 10

²⁴ Aug. 2022

csc

Clustering

Spatially resolved transcriptomics

25

Cluster visualisation

- UMAP plot
- Clusters on top of the slice image

CSC

Tricky to see the clusters?

• Using Visualise clusters tool and drawing one cluster at a time helps

CSC

3

Identifying spatially variable genes

Two approaches for detecting genes whose expression level depends on spatial location

• Compare selected clusters

• Uses cluster information, similar to what we did with scRNAseq data

- \circ Works when clusters show clear spatial restriction
- Look for spatially variable genes in the absence of pre-annotation (e.g. cluster info) • Markvariogram
 - ${\scriptstyle \odot}$ Models spatial data as a mark point process and computes a variogram.
 - \circ Takes a lot of time (will be parallelised)

 \circ Moransi

 $_{\odot}$ Will be integrated in Chipster later

 $\circ\, \text{SpatialDE}$ and Splotch are not in Seurat yet

Identify spatially variable genes based on clusters

Seurat v4 -Identify spatially variable genes based on clusters				
Parameters		S Reset All		
First cluster Cluster you want to identify the differentially expressed for.	1	0		
Second cluster A second cluster for comparison.	2	٢		
Test for differential expression	wilcox	\$		

preadshe	et Text Open in N	lew Tab Details					
howing the first 100 of 768 rows. View in full screen to see all rows.							
	p_val	avg_log2FC	pct.1	pct.2	p_val_adj		
Cplx2	3.92080909952008e-50	1.16425939214283	1	0.99	7.16331822482318e-4		
Enc1	8.11425813747733e-49	0.986994243906093	1	1	1.48247496171711e-4		
Calb1	1.96410165638653e-48	1.34564614356816	1	0.849	3.58841372621819e-4		
Nrsn1	1.97307361691315e-45	-0.904652839123701	1	1	3.60480549810033e-4		
Ndfip1	2.83865874686529e-45	-0.653973525431654	1	1	5.18622953052288e-4		

Parameters will be added to limit testing to genes which

- are expressed in at least X fraction of cells • Seurat's default 10%
- show at least Y fold difference
 Seurat's default 0.25

csc

Identify spatially variable genes using markvariogram

- Models spatial data as a mark point process and computes a variogram
 - This process calculates gamma(r) values measuring the dependence between two spots a certain "r" distance apart. By default, Seurat uses an r-value of 5, and only computes these values for variable genes to save time.

Subset anatomical regions

Subset out clusters

• Select clusters you want to subset to study them further

 You can use the "Visualise clusters" tool to more easily see which clusters correspond to specific regions in the slide

• If you are going to integrate with scRNA-seq data, select the clusters that correspond to that data

 $\odot \mbox{Other}$ clusters can give rise to false positive cell type assignments

Integration with scRNA-seq data

Integration with scRNA-seq data

- What is the cell type composition in the spots?
- We use scRNA-seq data as a reference data set
- Several methods available, Seurat uses anchor-based method

Integration with sc reference

CSC

Picture 1.. "Integrating Single-cell and Visium Spatial Gene Expression Data" 10xgenomics..com, 17th Mar. 2022, https://www.10xgenomics.com/resources/analysis-guides/integrating-single-cell-and-visium-spatial-gene-expression-data. Accessed 19 Aug. 2022

Integration with scRNA-seq data using Seurat

- Find anchors between Visium data and scRNA-seq data (MNN)
- Create correction vector based on differences in expression
- Use correction vectors to remove platform effects
- Integrate data sets
- Transfer cell type information from scRNA-seq data to spatial spots

Spatial Transcriptomics / Seurat v4 -Visualise integration

- Currently, this tool takes as input a allen_cortex.rds reference file and the subsetted Seurat object
- As output:
 - Seurat object with predictions for spots cell types
 - A pdf showing the reference data as UMAP plot

CSC

Visualise integrated data

- Allows you to visualise the cell type predictions of interest (give as parameter)
- Cell types whose location is spatially restricted
 - The same methods used as to define spatially variable features (markvariogram), but use the cell type <u>prediction scores</u> as the "marks" rather than gene expression
 - \circ Currently, top4 of these types are plotted

Combine samples

Combine samples

• Currently, two options:

\circ Merge

- Simple 1+1 merging, used in Seurat vignette
- Ok, when there's no big batch effect

\circ Integrate

 Similar to what is used to combine samples in scRNAseq data

Seurat v4 -Combine multiple samples

CSC

×

Batch effects

- Strong batch effects between samples can affect the multiple sample analysis

CSC

- Can be removed with integration

Picture 1: https://www.nature.com/articles/nbt.4096