
CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-
osaamiskeskus

Visium data analysis using Chipster

Autumn 2022

Eija Korpelainen, Maria Lehtivaara Iida Hakulinen



2

Spatial transcriptomics

Spatially resolved transcriptomics

Introduction



Overview

• Intro to spatially resolved transcriptomics

• How does the Visium system work?

• Things to keep in mind when working with Visium data

• What will you learn during this course
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Spatially resolved transcriptomics

• Spatial context: Gene expression data overlaid with a tissue image

oretains organization of tissue and cellular microenvironment 

ocell type identification in the context of heterogeneous tissue

• Several technologies available

othis course focuses on 10X Genomics Visium data
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Visium – how does it work?

• Place tissue slice (frozen or FFPE) on a capture area on a slide

• Capture area contains about 5000 barcoded spots

oSpot diameter 55 um, center to center distance 100 um

oNOTE: about 1-10 cells per spot

• Each spot has millions of capture probes

o16 nt spatial barcode to track back the location

o12 nt UMI for counting

o30 nt poly(dT) to capture polyA

• Stain, image, permeabilize cells

• cDNA synthesis

• Library construction

5 Image by 10X Genomics



Visium data – things to remember

• Each spot typically includes several cells, not just one

• There can be different types of cells in a spot

• The gene expression values measured are an average from the cells in a spot

• Clusters represent a group of spots with similar composition of cell types
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During this course you will learn how to

• Create a Seurat object and check the quality of spots

oFilter out low quality spots (damaged tissue)

• Normalise gene expression values and identify highly variable genes

• Reduce dimensions with PCA using the highly variable genes

• Use the PCs to cluster spots with graph based clustering

oVisualise clusters (UMAP and overlay with the tissue image)

• Detect spatially variable genes

oVisualise gene expression on the tissue image

• Subset anatomical regions

• Predict cell type composition in spots: Integrate with scRNA-seq data

• Integrate several samples
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Spatially resolved transcriptomics

Setting up Seurat object



Input for the tool ”Seurat – setup and QC”

• 10X Genomics output files (from Visium Space Ranger software):

oFiltered_feature_bc_matrix.h5 (= spot by gene expression matrix)

oTissue_hires_image.png (= image of the tissue slice)

oTissue_lowres_image.png

oScalefactors_json.json (= relate the high res image to low res)

oTissue_positions_list.csv (make sure that doesn’t contain the column 
names) (= spot positions over the image)

• Make a tar package of these files

oYou can use the Chipster Utilities tool “Make a tar package” for this

→ Seurat object containing spot-level expression data & the 

associated image of the tissue slice

• If you have multiple samples, do this for every sample
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Spatially resolved transcriptomics

Quality control



QC violin plots produced by the Seurat setup tool
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QC data plotted on tissue image
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• nCount_Spatial: big differences in UMI counts per spot

otechnical and biological reasons (tissue anatomy) → normalization required

• High percentage of mitochondrial reads near the edges, tears and folds of tissue

o damaged tissue 



Filtering bad quality spots
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• You can filter spots prior to normalization 

oMitochondrial transcript percentage

oHemoglobin transcript percentage
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Spatially resolved transcriptomics

Normalisation



Normalising expression values across spots

• Sequencing depth (number of UMIs per cell) varies significantly between spots
• Normalized expression values of a gene should be independent of sequencing depth
• Variance can be substantial for spatial datasets

• Cell density varies across the tissue → global scaling normalization doesn’t work

• Use SCTransform
oDoesn’t force the same “size”
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SCTransform

• Models gene expression as a function of sequencing depth using GLM 

oConstrains the model parameters through regularization, by pooling information across genes 
which are expressed at similar levels

oNormalized expression values = Pearson residuals from regularized negative binomial regression

• Works well also for high expressing genes

• In addition to normalization, identifies highly variable genes and scales data

• SCTransform v2 even better
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Picture 1: https://satijalab.org/seurat/articles/spatial_vignette.html#data-preprocessing-2
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Spatially resolved transcriptomics

Gene expression visualization



Overlay gene expression values on top of histology image

• If you want to see the tissue better you can modify 

opoint size 

otransparency of the points (spots with lower expression for gene X are more transparent)
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Spatial transcriptomics

Dimension reduction

Spatially resolved transcriptomics



Dimensionality reduction
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Picture 1. Im, Jonas. ”Introduction to PCA” Medium.com, 6th Dec. 2018, 
https://medium.com/@jamesim2077/introduction-to-pca-principal-component-analysis-c26dffe2a857. Accessed 10 
Aug. 2022

https://medium.com/@jamesim2077/introduction-to-pca-principal-component-analysis-c26dffe2a857
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Spatial transcriptomics

Clustering

Spatially resolved transcriptomics



Cluster visualisation

• UMAP plot

• Clusters on top of the 

slice image
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Tricky to see the clusters?

• Using Visualise clusters tool 

and drawing one cluster at a 

time helps
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Spatial transcriptomics

Identifying spatially variable genes

Spatially resolved transcriptomics



Two approaches for detecting genes whose expression level
depends on spatial location

• Compare selected clusters

oUses cluster information, similar to what we did with scRNAseq data

oWorks when clusters show clear spatial restriction

• Look for spatially variable genes in the absence of pre-annotation (e.g. cluster info)

oMarkvariogram

oModels spatial data as a mark point process and computes a variogram. 

o Takes a lot of time (will be parallelised)

oMoransi

oWill be integrated in Chipster later

oSpatialDE and Splotch are not in Seurat yet
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Identify spatially variable genes based on clusters

Parameters will be added to limit testing to genes which

• are expressed in at least X fraction of cells 

oSeurat’s default 10%

• show at least Y fold difference

oSeurat’s default 0.25
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Identify spatially variable genes using markvariogram
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• Models spatial data as a mark point process and computes a variogram 

oThis process calculates gamma(r) values measuring the dependence between 

two spots a certain “r” distance apart. By default, Seurat uses an r-value of 5, and 

only computes these values for variable genes to save time.
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Spatial transcriptomicsSubset anatomical regions

Spatially resolved transcriptomics



Subset out clusters

• Select clusters you want to subset to study them further

oYou can use the “Visualise clusters” tool to more easily see which clusters correspond 
to specific regions in the slide

• If you are going to integrate with scRNA-seq data, select the clusters that

correspond to that data

oOther clusters can give rise to false positive cell type assignments
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Spatial transcriptomicsIntegration with scRNA-seq data

Spatially resolved transcriptomics



Integration with scRNA-seq data

• What is the cell type composition in the spots?

• We use scRNA-seq data as a reference data set

• Several methods available, Seurat uses anchor-based method
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Integration with sc reference
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Picture 1.. ” Integrating Single-cell and Visium Spatial Gene Expression Data” 10xgenomics..com, 17th Mar. 2022, 
https://www.10xgenomics.com/resources/analysis-guides/integrating-single-cell-and-visium-spatial-gene-expression-
data. Accessed 19 Aug. 2022



Integration with scRNA-seq data using Seurat

• Find anchors between Visium data and scRNA-seq data (MNN)

• Create correction vector based on differences in expression

• Use correction vectors to remove platform effects

• Integrate data sets

• Transfer cell type information from scRNA-seq data to spatial spots
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Spatial Transcriptomics / Seurat v4 -Visualise integration

• Currently, this tool takes as 

input a allen_cortex.rds

reference file and the subsetted 

Seurat object

• As output:

oSeurat object with predictions 
for spots cell types

oA pdf showing the reference data 
as UMAP plot
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Visualise integrated data

• Allows you to visualise the cell type 

predictions of interest (give as parameter)

• Cell types whose location is spatially 

restricted

oThe same methods used as to define 
spatially variable features (markvariogram), 
but use the cell type prediction scores as the 
“marks” rather than gene expression

oCurrently, top4 of these types are plotted
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Spatial transcriptomicsCombine samples

Spatially resolved transcriptomics



Combine samples

• Currently, two options:

oMerge

o Simple 1+1 merging, used in 
Seurat vignette

oOk, when there’s no big 
batch effect

oIntegrate

o Similar to what is used to 
combine samples in scRNA-
seq data
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Batch effects
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- Strong batch effects between samples can affect the multiple sample analysis
- Can be removed with integration

Picture 1: https://www.nature.com/articles/nbt.4096


