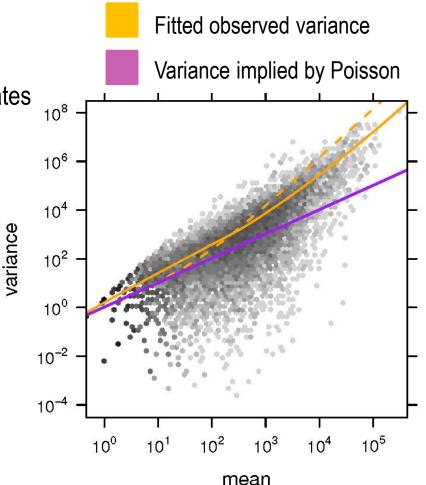


Comparison of differential expression analysis tools for RNA-seq

Laura Elo, PhD, Adjunct Professor, Group Leader

Computational Biomedicine Group Turku Centre for Biotechnology and Department of Mathematics and Statistics

Turun yliopisto University of Turku


Background

- A fundamental research problem in many RNA-seq studies is the identification of reliable molecular markers showing differential expression between sample groups (e.g. healthy and disease)
- A number of data analysis methods and pipelines have already been developed for this task
- BUT... there is no clear consensus about the best practices, which makes the choice of an appropriate method a daunting task

Data analysis challenges

- Normalization
 - Remove technical biases
 - Sequencing depth varies between replicates
- Small numbers of replicates
 - Accuracy of dispersion estimation
 - Permutation methods not effective
- Statistical model
 - Overdispersion

Botany

American Journal of Botany 99(2): 000-000. 2012.

A comparison of statistical methods for detecting differentially expressed genes from ${\bf RNA}{\text{-}}{\bf seq}$ data 1

VANESSA M. KVAM, PENG LIU², AND YAQING SI

Soneson and Delorenzi *BMC Bioinformatics* 2013, **14**:91 http://www.biomedcentral.com/1471-2105/14/91

BMC Bioinformatics

Open Access

RESEARCH ARTICLE

A comparison of methods for differential expression analysis of RNA-seq data

Charlotte Soneson^{1*} and Mauro Delorenzi^{1,2}

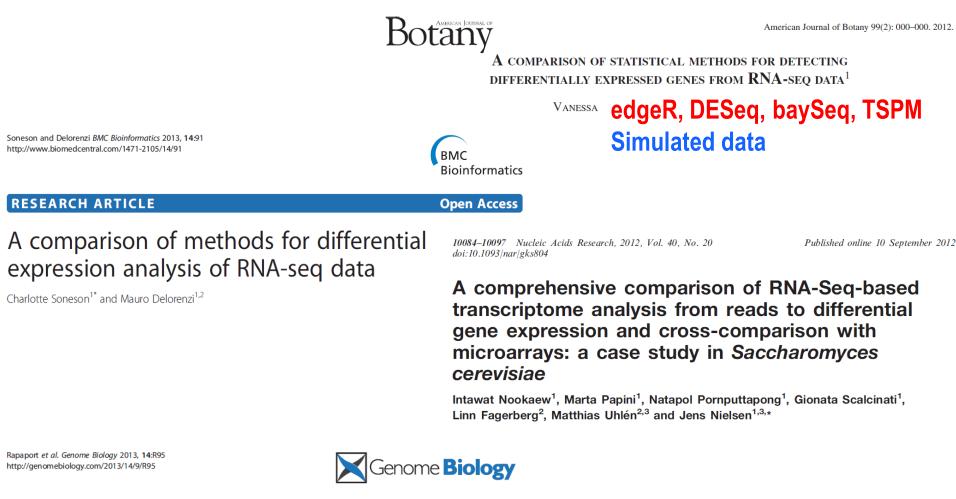
10084–10097 Nucleic Acids Research, 2012, Vol. 40, No. 20 doi:10.1093/nar/gks804

Published online 10 September 2012

A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in *Saccharomyces cerevisiae*

Intawat Nookaew¹, Marta Papini¹, Natapol Pornputtapong¹, Gionata Scalcinati¹, Linn Fagerberg², Matthias Uhlén^{2,3} and Jens Nielsen^{1,3,*}

Rapaport et al. Genome Biology 2013, 14:R95 http://genomebiology.com/2013/14/9/R95



METHOD

Open Access

Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data

METHOD

Open Access

Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data

American Journal of Botany 99(2): 000-000. 2012.

A comparison of statistical methods for detecting differentially expressed genes from \mathbf{RNA} -seq data¹

VANESSA edgeR, DESeq, baySeq, TSPM Simulated data

Soneson and Delorenzi BMC Bioinformatics 2013, 14:91 http://www.biomedcentral.com/1471-2105/14/91

BMC Bioinformatics

edgeR, DESeq, baySeq, TSPM, NOIseq, limma, EBSeq, SAMseq, NBPSeq, ShrinkSeq Simulated data mainly

Botany

expression analysis of RNA-seq data

Charlotte Soneson^{1*} and Mauro Delorenzi^{1,2}

mber 2012

A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in *Saccharomyces cerevisiae*

Intawat Nookaew¹, Marta Papini¹, Natapol Pornputtapong¹, Gionata Scalcinati¹, Linn Fagerberg², Matthias Uhlén^{2,3} and Jens Nielsen^{1,3,*}

Rapaport et al. Genome Biology 2013, 14:R95 http://genomebiology.com/2013/14/9/R95

METHOD

Open Access

Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data

American Journal of Botany 99(2): 000-000. 2012.

mber 2012

A comparison of statistical methods for detecting differentially expressed genes from \mathbf{RNA} -seq data¹

VANESSA edgeR, DESeq, baySeq, TSPM Simulated data

Soneson and Delorenzi BMC Bioinformatics 2013, 14:91 http://www.biomedcentral.com/1471-2105/14/91

BMC Bioinformatics

edgeR, DESeq, baySeq, TSPM, NOIseq, limma, EBSeq, SAMseq, NBPSeq, ShrinkSeq Simulated data mainly

Botany

expression analysis of RNA-seq data

Charlotte Soneson^{1*} and Mauro Delorenzi^{1,2}

A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with

microarrays: a case study in *Saccharomyces cerevi*: Intawat Nc edgeR, DESeq, baySeq, NOIseq, Cuffdiff

^{9er} Real data but only 3 replicates

Rapaport et al. Genome Biology 2013, 14:R95 http://genomebiology.com/2013/14/9/R95

METHOD

Open Access

Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data

American Journal of Botany 99(2): 000-000. 2012.

A comparison of statistical methods for detecting differentially expressed genes from \mathbf{RNA} -seq data¹

VANESSA edgeR, DESeq, baySeq, TSPM Simulated data

Soneson and Delorenzi BMC Bioinformatics 2013, 14:91 http://www.biomedcentral.com/1471-2105/14/91

BMC Bioinformatics

edgeR, DESeq, baySeq, TSPM, NOIseq, limma, EBSeq, SAMseq, NBPSeq, ShrinkSeq Simulated data mainly

Botany

expression analysis of RNA-seq data

Charlotte Soneson^{1*} and Mauro Delorenzi^{1,2}

mber 2012

A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in *Saccharomyces cerevis* Intawat Nc edgeR, DESeq, baySeq, NOIseq, Cuffdiff

Linn Fager Real data but only 3 replicates

Rapaport et al. Genome Biology 2013, 14:R95 http://genomebiology.com/2013/14/9/R95

METHOD

Open Access

Comprehensive evaluation of differe expression analysis methods for RNA

differe or RNA Spike-in/real data but only few replicates

Franck Rapaport¹, Raya Khanin¹, Yupu Liang¹, Mono Pirun¹, Azra Krek¹, Paul Zum Nicholas D Socci¹ and Doron Betel^{3,4*}

Goal of this study

• To assist the choice of a robust pipeline for detecting differential expression between sample groups in a practical research setting

Briefings in Bioinformatics Advance Access published December 2, 2013 BRIEFINGS IN BIOINFORMATICS. page 1 of 12 doi:10.1093/bib/bbt086

Comparison of software packages for detecting differential expression in RNA-seq studies

Fatemeh Seyednasrollah, Asta Laiho and Laura L. Elo

Goal of this study

• To assist the choice of a robust pipeline for detecting differential expression between sample groups in a practical research setting

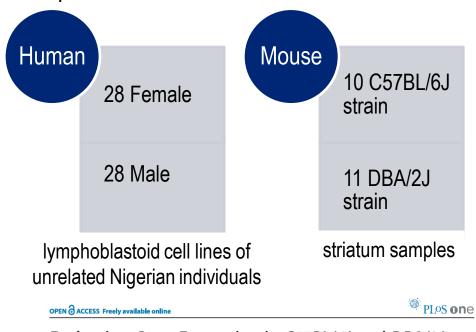
Briefings in Bioinformatics Advance Access published December 2, 2013 BRIEFINGS IN BIOINFORMATICS. page 1 of 12 doi:10.1093/bib/bbt086

Comparison of software packages for detecting differential expression in RNA-seq studies

Fatemeh Seyednasrollah, Asta Laiho and Laura L. Elo

edgeR, DESeq, baySeq, NOIseq, limma, EBSeq, SAMseq, Cuffdiff 2 Real data with 2 to 28 replicates per group

Datasets


nature

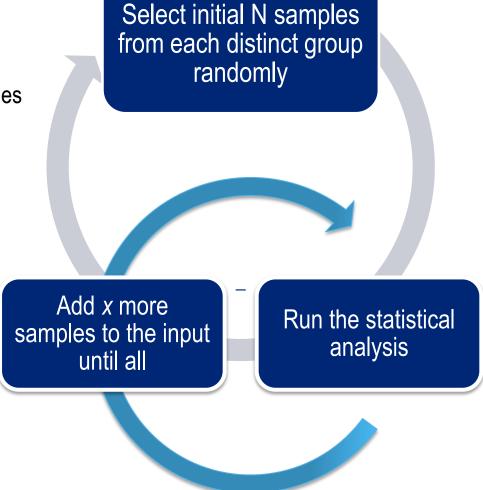
TFRS

- Two publicly available datasets generated by Illumina Genome Analyzer II platform
 - Publicly available to make the analysis reproducible

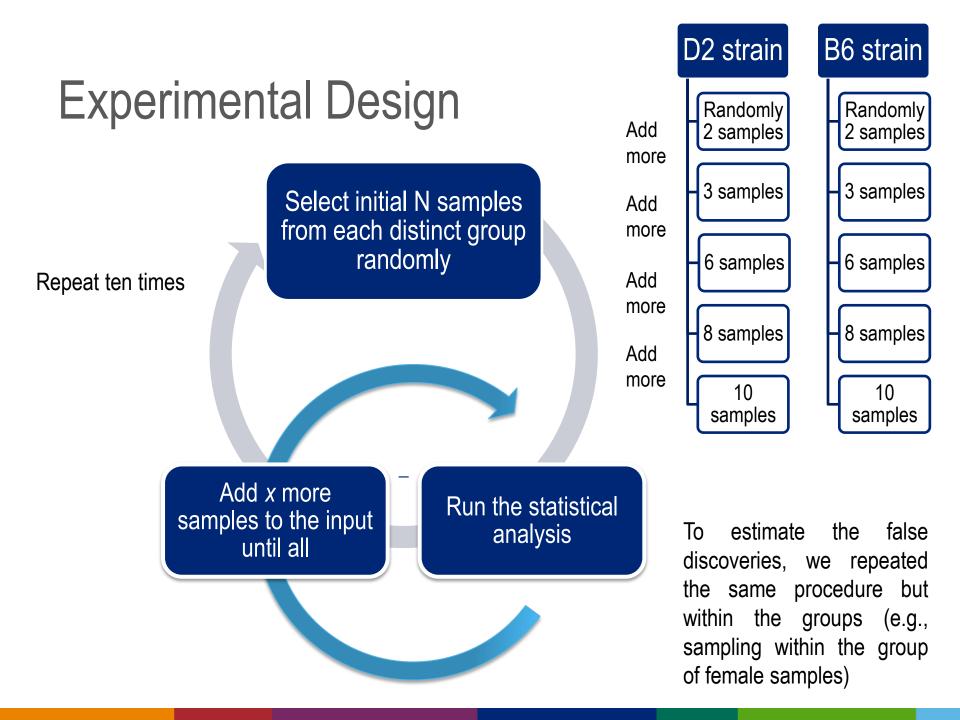
Vol 464 | 1 April 2010 | doi:10.1038/nature08872

- Large number of samples
- Different level of heterogeneity
- Different organisms

Understanding mechanisms underlying human gene expression variation with RNA sequencing


Joseph K. Pickrell¹, John C. Marioni¹, Athma A. Pai¹, Jacob F. Degner¹, Barbara E. Engelhardt², Everlyne Nkadori^{1,3}, Jean-Baptiste Veyrieras¹, Matthew Stephens^{1,4}, Yoav Gilad¹ & Jonathan K. Pritchard^{1,3}

Evaluating Gene Expression in C57BL/6J and DBA/2J Mouse Striatum Using RNA-Seq and Microarrays


Daniel Bottomly²«⁹, Nicole A. R. Walter^{1,3,9}, Jessica Ezzell Hunter³, Priscila Darakjian³, Sunita Kawane², Kari J. Buck^{1,3}, Robert P. Searles⁴, Michael Mooney⁵, Shannon K. McWeeney^{2,5,6,7}, Robert Hitzemann^{1,3}

Experimental Design

RNA-seq data analysis pipeline

- Quality control (fastq files)
 - FastQC
- Alignment
 - TopHat2 (RefSeq references)
 - Alignment rate in human 89% and mouse 86%
- Expression level quantification
 - HTSeq
 - Table of counts
- Normalization
 - Package default/TMM
 - TMM: Trimmed Mean of M values
- Statistical analysis
 - Eight state-of-the-art methods

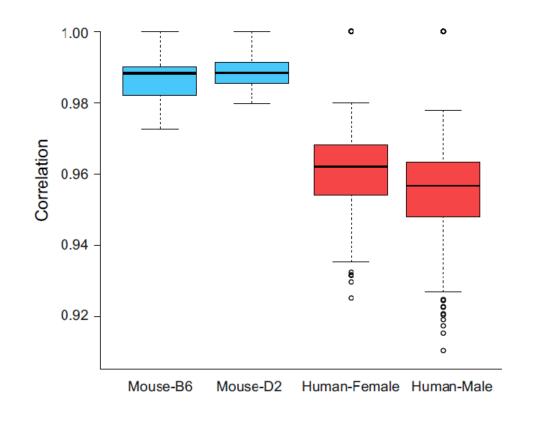
Count tables

- Matrix of data with genomic features as rows and experiment samples as columns
- Is the difference between the conditions greater than what we expect taking into account normal biological variation? Can we detect reliable differentially expressed biomarkers?

Gene name	case 1	case 2	control 1	control 2
0610005C13Rik	6	8	3	5
0610007C21Rik	645	415	580	364
0610007L01Rik	897	685	753	503
0610007N19Rik	13	7	11	14
0610007P08Rik	278	208	246	201
0610007P14Rik	384	239	299	244

Software packages

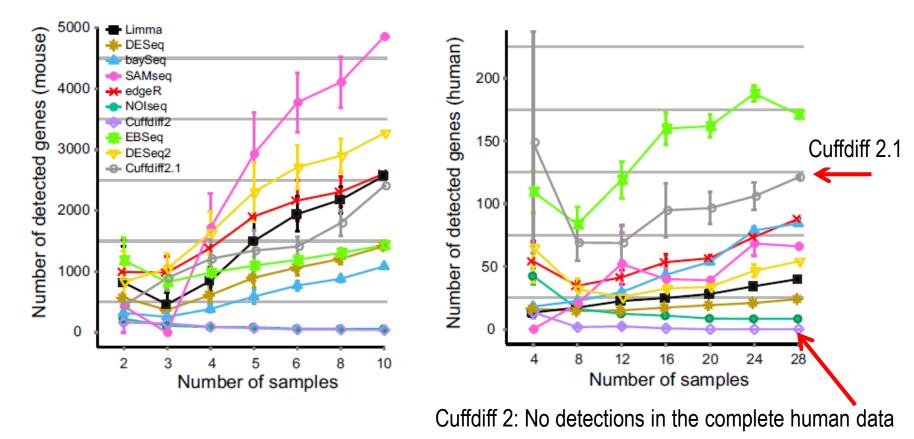
-			
Method	Normalization	Read counts distribution	Differential Expression Test
edgeR	TMM	Negative Binomial distribution	Exact test
DESeq	DESeq sizeFactors	Negative Binomial distribution	Exact test
Limma	TMM	Voom transformation of counts	Empirical Bayes method
NOISeq	RPKM/TMM/Upper Quantile	Non parametric method	compares the observed differences to null distribution (Contrasts fold changes and absolute differences within a condition)
baySeq	Scaling factors/TMM	Negative Binomial distribution	Empirical Bayesian Analysis
SAMseq	Method based on the mean read count over the null features of the data set	Non parametric method	Wilcoxon rank statistic and a resampling strategy
Cuffdiff2	DESeq like normalization	Beta Negative Binomial distribution	t-test
EBSeq	Median normalization	Negative Binomial distribution	Empirical Bayesian Analysis

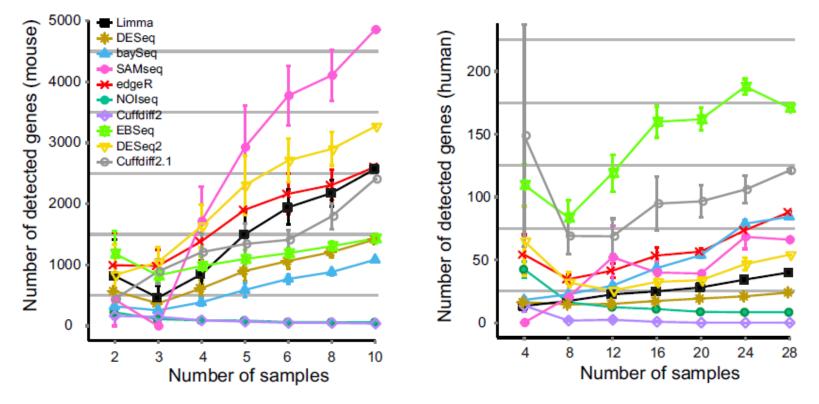

Performance criteria

- Number of detections and their consistency
- False discoveries
- Correlation between methods
- Runtimes
- False discovery rate control FDR < 0.05
 - NOIseq did not report any FDR estimate (probability of differential expression > 0.8)
- Focus on default parameters and recommendations provided in the software manuals which are likely used by an average user Turun yliopisto

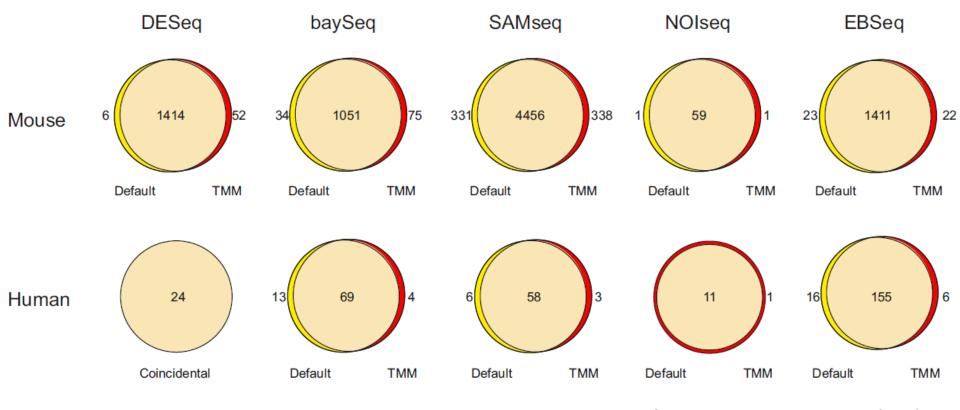
University of Turku

Data set intrinsic properties

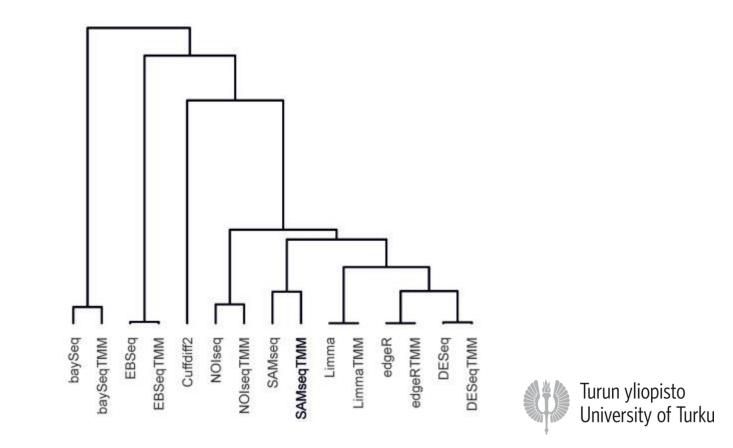

• The mouse data are more homogenous than the human data


Results: Number of detections

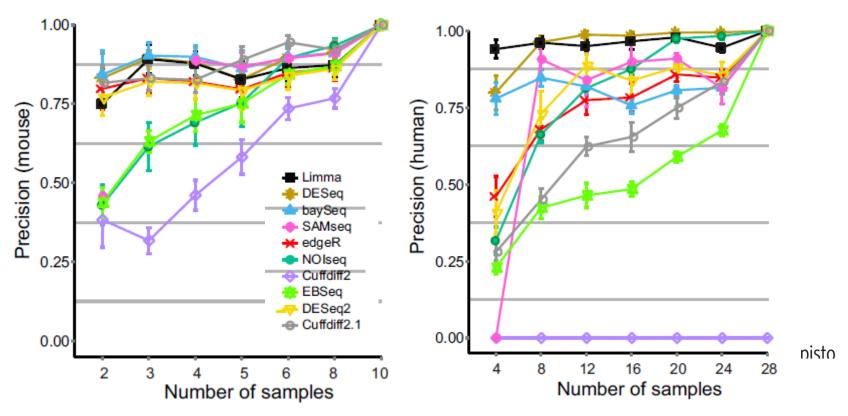
 Number of detections increased as the number of replicates increased, except for NOIseq and Cuffdiff 2 (low power)


Results: Number of detections

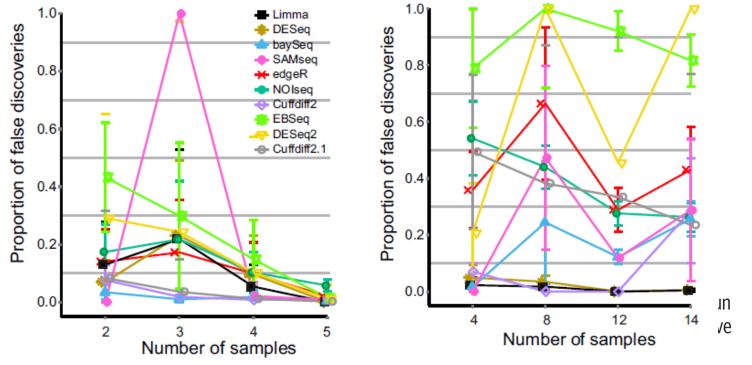
- Moderate: DESeq (more conservative) and Limma
- Liberal: edgeR and SAMseq (except for smallest numbers of replicates)
- Data dependent: baySeq and EBseq


Effect of normalization on the detections

• The package default normalization and the TMM normalization produced highly overlapping detections (>80%)

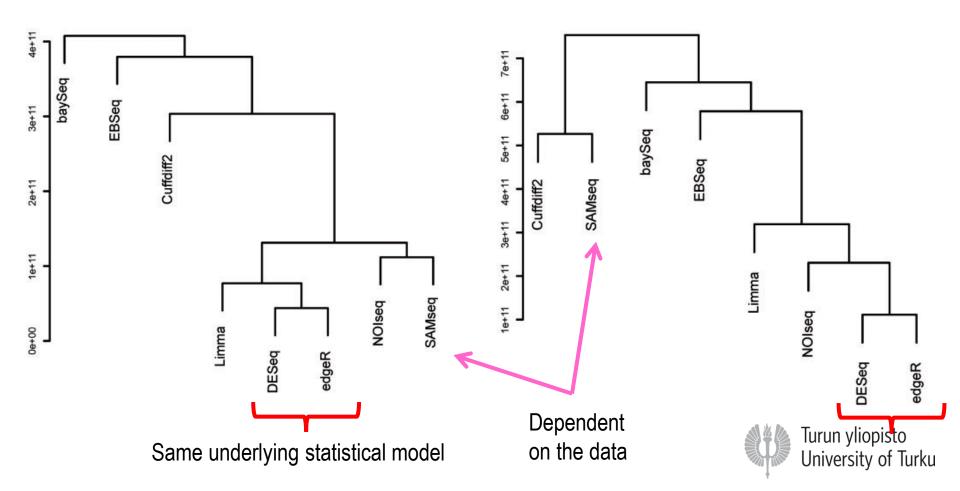

Effect of normalization on the detections

 Comparison of the gene rankings confirmed the overall similarity of the results

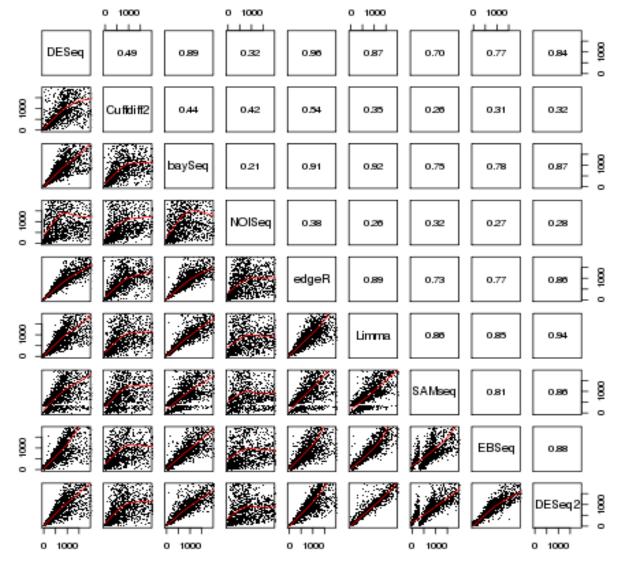

Results: Consistency of detections

- Overlap of detections between the subdatasets and the complete data
 - Generally highest with DESeq and Limma
 - Generally lowest with NOIseq, Cuffdiff 2 and EBseq

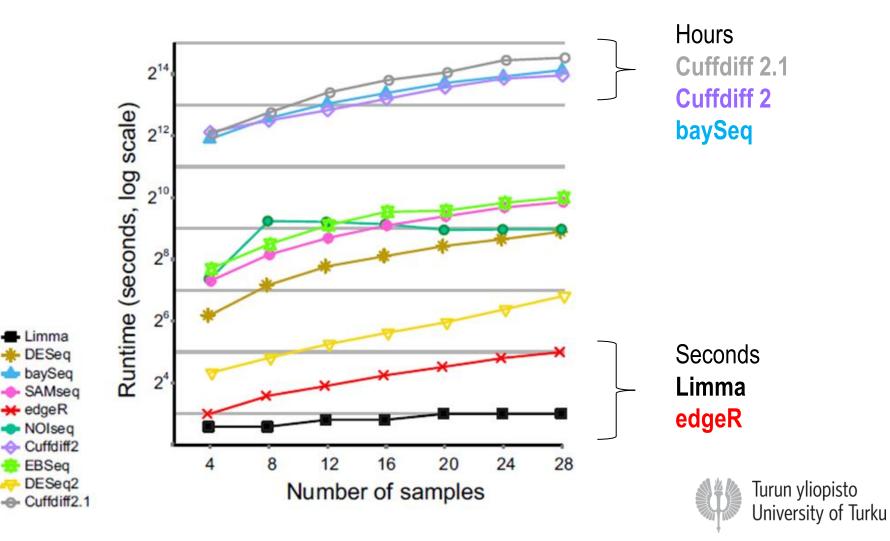
Results: False discoveries


- Number of false discoveries decreased when the number of replicates was increased, especially in less heterogeneous data (mouse)
 - In general, Limma, DESeq and baySeq performed well
 - EBseq, SAMseq, edgeR and NOIseq identified relatively many false positives

Results: Similarity between the methods


Mouse

Human



Results: Similarity between the methods

Those 1952 genes that were among the top 1000 ranked genes within any of the methods in the mouse data and the corresponding Spearman rank correlations

Results: Runtimes

Conclusions

- There can be large differences in the results obtained with the different software packages
- The choice of the normalization method had surprisingly little influence on the outcome
- Differences between the results obtained using different versions of the software packages can be significant
- No single method is likely to be optimal under all circumstances
- Marked differences in the quality and detail of the documentation of the pipelines
 Turun yliopisto University of Turku

Relation to other comparison studies

- Overall, our observations in real data complemented well the previous observations by Soneson and Delorenzi in simulated data
- DESeq was often relatively conservative
- edgeR and EBSeq were often too liberal
- SAMseq performed well only when the number of replicates was relatively large
- Performance of baySeq was highly variable depending on the data
- Limma performed generally well under many circumstances

General guidelines

- Robust performance under many circumstances?
 - Limma and DESeq (more conservative)
- Do you have small number of biological replicates (say <5)?
 - Take the results with caution
 - It may be informative to consider more than one software package
 - We do not recommend non-parametric approaches like SAMseq
- Do you have more than five replicates?
 - Avoid using NOIseq and Cuffdiff 2
 - With relatively large numbers of replicates (say >10) non-parametric methods like SAMseq may be useful
- Investigate the properties of the data in advance

Acknowledgements

- Computational Biomedicine Group, Turku Centre for Biotechnology
 - An Le Thi Thanh, PhD
 - Tomi Suomi, MSc
 - Daniel Laajala, MSc
 - Anna Pursiheimo, MSc
 - Maria Jaakkola, MSc
 - Kalaimathy Singaravelu, MSc
 - Deepankar Chakroborty, BSc
 - Bishwa Ghimire, MSc (FMSC)

Fatemeh Seyednasrollah Asta Laiho, MSc Tech FMSC

 Academy of Finland, JDRF, Päivikki and Sakari Sohlberg Foundation, Yrjö Jahnsson Foundation

