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RNA-seq:
» High-Throughput Sequencing of cDNA
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» mapped read count = abundance of fragments

» abundance of fragments ~ (gene expression) x (length)
> but which length? which transcripts?

» other difficulties: mismatches, varying quality of reads,
non-uniform read distribution

» our starting point: reads aligned to transcriptome allowing
for multiple matches (using e.g. Bowtie)



Transcripts are expressed, not genes:
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Transcripts are expressed, not genes:
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P(fragment|transcript)
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P(transcript|) P(read|fragment)

P(read|0) = P(transcript|f)P(fragment|transcript) P(read|fragment)

P(Datal|@)P(0)
P(Datalf) = HP read;|0); P(0|Data) = ~ PData)

» Bayesian inference: we use Markov Chain Monte Carlo
(MCMC) algorithm to produce samples from P(#|Data)

» RPKM expression units o< #/transcript length
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Bayesian Inference
» Represent unknowns in form of probability distribution

(instead of value + confidence interval)

6 ~ N(ulo)

» We use probability theory (Bayes Theorem) to manipulate
these distributions

» MCMC is a numerical method to generate samples from a
distribution of interest

» Results can be summarized by mean and standard deviation:

E[f] = mean(S); oy = stdev(S)



Results:
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Histograms of expression MCMC samples of three transcripts of one gene.



Anticorrelation:
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Accuracy, real data:
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Comparison of expression estimation accuracy against TagMan qRT-PCR using
Pearson R? (893 transcripts, MAQC I1)

» using uniform read distribution model and bias correction
» other methods:

» RSEM: similar model, using Maximum Likelihood
» MMSEQ: count based model, using Maximum Likelihood and
Gibbs Sampling



Accuracy, synthetic data:
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Comparison of expression estimation accuracy against ground truth using
Pearson R? on synthetic RNA-seq data

» Transcript expression

» (transcripts with at least 1 read)
> Relative within-gene proportion of transcripts

» (transcripts of genes with at least 10 / 100 reads)
> Gene expression

> (genes with at least 1 read)



Differential expression:
» For transcript m we want to know the probability of the
expression in two experiments being different
» Compare the distributions represented by MCMC samples
» Probability of Positive Log Ratio — one sided Bayesian test
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» PPLR close to 1/0 indicates confident up/down regulation



Biological variation:
» dataset from Short Read Archive (Xu et al. 2010)

» 2 Conditions x 2 Biological replicates x Technical replicates
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Single transcript DE analysis with biological replicates:
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» Estimating condition mean expression and differential expression in
comparison with naive method of merging samples

»> Simple merge of two replicates results in bimodal distribution, but PPLR
0.9955

» Our approach produces PPLR 0.8361



Differential expression detection accuracy:
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Differential expression detection accuracy split by
expression level:
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Conclusion:

>

Method for transcript-level expression estimation and
differential expression calling
Principled handling of:

» read qualities, non-uniform read distribution, reads with
multiple alignments, paired-end reads

Using Bayesian methods to propagate uncertainties from
read-level to DE estimates

Accurate within-gene relative expression of transcripts

Accounts for biological variation in differential expression

Current/recent work:
» Faster inference of expression values (available in BitSeq 0.7.0)



Resources:

» Papers:

» Glaus P., Honkela A., and Rattray M. (2012) “Identifying
differentially expressed transcripts from RNA-seq data with
biological variation” Bioinformatics, 28(13), 1721-1728.

» Hensman J., Glaus P., Honkela A., Rattray M. (2013) “Fast
approximate inference of transcript expression levels from
RNA-seq data” http://arxiv.org/abs/1308.5953

» Package:
» Bioconductor 2.10 and newer
» standalone at http://code.google.com/p/bitseq/
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BitSeq pipeline

1. Align reads to a reference transcriptome

(Each transcript sequence in reference, contiguous alignments)
2. Stage 0: Pre-process alignments

(For each sample separately; parseAlignment)

3. Stage 1: Estimate expression
(For each sample separately; estimateExpression)

4. Stage 2: Estimate variances, condition-specific expression and
probability of differential expression
(For all samples together; getVariance,
estimateHyperPar, estimateDE)
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