
Transcript isoform expression and differential
expression estimation with BitSeq

Peter Glaus1, Antti Honkela2, Magnus Rattray1

1 Faculty of Life Science, University of Manchester, UK
2 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, University of Helsinki, Finland

8 January 2014



RNA-seq:

I High-Throughput Sequencing of cDNA

I mapped read count ≈ abundance of fragments

I abundance of fragments ≈ (gene expression) x (length)

I but which length? which transcripts?

I other difficulties: mismatches, varying quality of reads,
non-uniform read distribution

I our starting point: reads aligned to transcriptome allowing
for multiple matches (using e.g. Bowtie)
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Transcripts are expressed, not genes:

gene expression ≈ sum over transcript expression
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Transcripts are expressed, not genes:
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BitSeq:

Goals

I Estimate expression of transcripts from RNA-seq data

I Find differentially expressed transcripts in multiple
conditions while accounting for biological variation
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RNA-seq generative model approach:

I Unknown relative expression of transcripts’ fragments θ

P(transcript|θ)

P(fragment|transcript)

P(read|fragment)

P(read|θ) = P(transcript|θ)P(fragment|transcript)P(read|fragment)

P(Data|θ) =
n∏

i=1

P(readi |θ); P(θ|Data) =
P(Data|θ)P(θ)

P(Data)

I Bayesian inference: we use Markov Chain Monte Carlo
(MCMC) algorithm to produce samples from P(θ|Data)

I RPKM expression units ∝ θ/transcript length
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Bayesian Inference

I Represent unknowns in form of probability distribution
(instead of value + confidence interval)

θ ∼ N(µ|σ) θ ∼ S = {s1, . . . , sn}

I We use probability theory (Bayes Theorem) to manipulate
these distributions

I MCMC is a numerical method to generate samples from a
distribution of interest

I Results can be summarized by mean and standard deviation:

E[θ] = mean(S);σθ = stdev(S)
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Results:
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Histograms of expression MCMC samples of three transcripts of one gene.



Anticorrelation:

(a) (b) (c)

Density plots of expression MCMC samples of transcript pairs plotted against
each other. (expression in log RPKM)
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Accuracy, real data:

uniform bias corrected

0.72

0.74

0.76

0.78

0.80

0.82

P
e
a
rs

o
n
 R

^
2

BitSeq

Cufflinks

RSEM

MMSEQ

Comparison of expression estimation accuracy against TaqMan qRT-PCR using
Pearson R2 (893 transcripts, MAQC II)

I using uniform read distribution model and bias correction
I other methods:

I RSEM: similar model, using Maximum Likelihood
I MMSEQ: count based model, using Maximum Likelihood and

Gibbs Sampling



Accuracy, synthetic data:
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Comparison of expression estimation accuracy against ground truth using
Pearson R2 on synthetic RNA-seq data

I Transcript expression
I (transcripts with at least 1 read)

I Relative within-gene proportion of transcripts
I (transcripts of genes with at least 10 / 100 reads)

I Gene expression
I (genes with at least 1 read)



Differential expression:

I For transcript m we want to know the probability of the
expression in two experiments being different

I Compare the distributions represented by MCMC samples

I Probability of Positive Log Ratio — one sided Bayesian test

PPLRm = P

(
log

θ
(1)
m

θ
(2)
m

> 0

)
= P(log θ

(1)
m > log θ

(2)
m )

≈ 1

S

S∑
s=1

δ(log θ
(1)(s)
m > log θ

(2)(s)
m )

I PPLR close to 1/0 indicates confident up/down regulation



Biological variation:

I dataset from Short Read Archive (Xu et al. 2010)

I 2 Conditions × 2 Biological replicates × Technical replicates
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Single transcript DE analysis with biological replicates:
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I resulting distribution
of differences

I Estimating condition mean expression and differential expression in
comparison with naive method of merging samples

I Simple merge of two replicates results in bimodal distribution, but PPLR
0.9955

I Our approach produces PPLR 0.8361 DE model



Differential expression detection accuracy:
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I Simulated dataset with
differentially expressed
transcripts

I All simulation parameters from
real data

I 1/3 of transcripts differentially
expressed (both up and down)

I Fold changes uniformly
distributed between 1.5 and 3.5

I DESeq, edgeR, BaySeq were
supplied with expression
estimates from BitSeq



Differential expression detection accuracy split by
expression level:
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Conclusion:

I Method for transcript-level expression estimation and
differential expression calling

I Principled handling of:
I read qualities, non-uniform read distribution, reads with

multiple alignments, paired-end reads

I Using Bayesian methods to propagate uncertainties from
read-level to DE estimates

I Accurate within-gene relative expression of transcripts

I Accounts for biological variation in differential expression

I Current/recent work:
I Faster inference of expression values (available in BitSeq 0.7.0)



Resources:

I Papers:
I Glaus P., Honkela A., and Rattray M. (2012) “Identifying

differentially expressed transcripts from RNA-seq data with
biological variation” Bioinformatics, 28(13), 1721–1728.

I Hensman J., Glaus P., Honkela A., Rattray M. (2013) “Fast
approximate inference of transcript expression levels from
RNA-seq data” http://arxiv.org/abs/1308.5953

I Package:
I Bioconductor 2.10 and newer
I standalone at http://code.google.com/p/bitseq/

http://code.google.com/p/bitseq/


BitSeq pipeline

1. Align reads to a reference transcriptome
(Each transcript sequence in reference, contiguous alignments)

2. Stage 0: Pre-process alignments
(For each sample separately; parseAlignment)

3. Stage 1: Estimate expression
(For each sample separately; estimateExpression)

4. Stage 2: Estimate variances, condition-specific expression and
probability of differential expression
(For all samples together; getVariance,
estimateHyperPar, estimateDE)
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