Transcript isoform expression and differential expression estimation with BitSeq

Peter Glaus¹, **Antti Honkela**², Magnus Rattray¹

Faculty of Life Science, University of Manchester, UK
Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

8 January 2014

- \blacktriangleright mapped read count \approx abundance of fragments
- abundance of fragments \approx (gene expression) x (length)

- \blacktriangleright mapped read count \approx abundance of fragments
- abundance of fragments \approx (gene expression) x (length)
- but which length? which transcripts?

- mapped read count pprox abundance of fragments
- abundance of fragments \approx (gene expression) x (length)
- but which length? which transcripts?
- other difficulties: mismatches, varying quality of reads, non-uniform read distribution

- mapped read count pprox abundance of fragments
- abundance of fragments \approx (gene expression) x (length)
- but which length? which transcripts?
- other difficulties: mismatches, varying quality of reads, non-uniform read distribution
- our starting point: reads aligned to transcriptome allowing for multiple matches (using e.g. Bowtie)

Transcripts are expressed, not genes:

gene expression \approx sum over transcript expression

Time (min)

Transcripts are expressed, not genes:

BitSeq:

Goals

- Estimate expression of transcripts from RNA-seq data
- Find differentially expressed transcripts in multiple conditions while accounting for biological variation

BitSeq:

Goals

- Estimate expression of transcripts from RNA-seq data
- Find differentially expressed transcripts in multiple conditions while accounting for biological variation

BitSeq:

Goals

- Estimate expression of transcripts from RNA-seq data
- Find differentially expressed transcripts in multiple conditions while accounting for biological variation

 \blacktriangleright Unknown relative expression of transcripts' fragments θ

• Unknown relative expression of transcripts' fragments θ

P(fragment|transcript)

• Unknown relative expression of transcripts' fragments θ

P(fragment|transcript)

 $P(\text{read}|\theta) = P(\text{transcript}|\theta)P(\text{fragment}|\text{transcript})P(\text{read}|\text{fragment})$

• Unknown relative expression of transcripts' fragments θ

P(fragment|transcript) P(fragment|transcript) $P(\text{transcript}|\theta)$ P(read|fragment)

 $P(\text{read}|\theta) = P(\text{transcript}|\theta)P(\text{fragment}|\text{transcript})P(\text{read}|\text{fragment})$

$$P(\mathsf{Data}| heta) = \prod_{i=1}^n P(\mathsf{read}_i| heta); \quad P(heta|\mathsf{Data}) = rac{P(\mathsf{Data}| heta)P(heta)}{P(\mathsf{Data})}$$

• Unknown relative expression of transcripts' fragments θ

 $P(\text{read}|\theta) = P(\text{transcript}|\theta)P(\text{fragment}|\text{transcript})P(\text{read}|\text{fragment})$

$$P(\mathsf{Data}| heta) = \prod_{i=1}^n P(\mathsf{read}_i| heta); \quad P(heta|\mathsf{Data}) = rac{P(\mathsf{Data}| heta)P(heta)}{P(\mathsf{Data})}$$

 Bayesian inference: we use Markov Chain Monte Carlo (MCMC) algorithm to produce samples from P(θ|Data)

• Unknown relative expression of transcripts' fragments θ

 $P(\text{read}|\theta) = P(\text{transcript}|\theta)P(\text{fragment}|\text{transcript})P(\text{read}|\text{fragment})$

$$P(\mathsf{Data}| heta) = \prod_{i=1}^n P(\mathsf{read}_i| heta); \quad P(heta|\mathsf{Data}) = rac{P(\mathsf{Data}| heta)P(heta)}{P(\mathsf{Data})}$$

- Bayesian inference: we use Markov Chain Monte Carlo (MCMC) algorithm to produce samples from P(θ|Data)
- RPKM expression units $\propto \theta/\text{transcript}$ length

 Represent unknowns in form of probability distribution (instead of value + confidence interval)

 Represent unknowns in form of probability distribution (instead of value + confidence interval)

 We use probability theory (Bayes Theorem) to manipulate these distributions

 Represent unknowns in form of probability distribution (instead of value + confidence interval)

- We use probability theory (Bayes Theorem) to manipulate these distributions
- MCMC is a numerical method to generate samples from a distribution of interest

 Represent unknowns in form of probability distribution (instead of value + confidence interval)

- We use probability theory (Bayes Theorem) to manipulate these distributions
- MCMC is a numerical method to generate samples from a distribution of interest
- Results can be summarized by mean and standard deviation:

$$\mathsf{E}[\theta] = \mathsf{mean}(S); \sigma_{\theta} = \mathsf{stdev}(S)$$

Results:

Histograms of expression MCMC samples of three transcripts of one gene.

Anticorrelation:

Density plots of expression MCMC samples of transcript pairs plotted against each other. (expression in log RPKM)

Accuracy, real data:

Comparison of expression estimation accuracy against TaqMan qRT-PCR using Pearson R^2 (893 transcripts, MAQC II)

- using uniform read distribution model and bias correction
- other methods:
 - RSEM: similar model, using Maximum Likelihood
 - MMSEQ: count based model, using Maximum Likelihood and Gibbs Sampling

Accuracy, synthetic data:

Comparison of expression estimation accuracy against ground truth using Pearson R^2 on synthetic RNA-seq data

- Transcript expression
 - (transcripts with at least 1 read)
- Relative within-gene proportion of transcripts
 - (transcripts of genes with at least 10 / 100 reads)
- Gene expression
 - (genes with at least 1 read)

Differential expression:

- ► For transcript *m* we want to know the probability of the expression in two experiments being different
- Compare the distributions represented by MCMC samples
- Probability of Positive Log Ratio one sided Bayesian test

$$\begin{aligned} \mathsf{PPLR}_m &= P\left(\log \frac{\theta_m^{(1)}}{\theta_m^{(2)}} > 0\right) = P(\log \theta_m^{(1)} > \log \theta_m^{(2)})\\ &\approx \frac{1}{S} \sum_{s=1}^S \delta(\log \theta_m^{(1)(s)} > \log \theta_m^{(2)(s)})\end{aligned}$$

▶ PPLR close to 1/0 indicates confident up/down regulation

Biological variation:

- dataset from Short Read Archive (Xu et al. 2010)
- ▶ 2 Conditions × 2 Biological replicates × Technical replicates

Averaged standard deviation of logged RPKM expression samples of: one MCMC run, combined MCMC samples from technical replication, combined MCMC from biological replication

Single transcript DE analysis with biological replicates:

- Estimating condition mean expression and differential expression in comparison with naive method of merging samples
- Simple merge of two replicates results in bimodal distribution, but PPLR 0.9955
- Our approach produces PPLR 0.8361

Differential expression detection accuracy:

- Simulated dataset with differentially expressed transcripts
- All simulation parameters from real data
- 1/3 of transcripts differentially expressed (both up and down)
- Fold changes uniformly distributed between 1.5 and 3.5
- DESeq, edgeR, BaySeq were supplied with expression estimates from BitSeq

Differential expression detection accuracy split by expression level:

Conclusion:

- Method for transcript-level expression estimation and differential expression calling
- Principled handling of:
 - read qualities, non-uniform read distribution, reads with multiple alignments, paired-end reads
- Using Bayesian methods to propagate uncertainties from read-level to DE estimates
- Accurate within-gene relative expression of transcripts
- Accounts for biological variation in differential expression
- Current/recent work:
 - ▶ Faster inference of expression values (available in BitSeq 0.7.0)

Resources:

- Papers:
 - Glaus P., Honkela A., and Rattray M. (2012) "Identifying differentially expressed transcripts from RNA-seq data with biological variation" *Bioinformatics*, 28(13), 1721–1728.
 - Hensman J., Glaus P., Honkela A., Rattray M. (2013) "Fast approximate inference of transcript expression levels from RNA-seq data" http://arxiv.org/abs/1308.5953
- Package:
 - Bioconductor 2.10 and newer
 - standalone at http://code.google.com/p/bitseq/

BitSeq pipeline

- Align reads to a reference transcriptome (Each transcript sequence in reference, contiguous alignments)
- Stage 0: Pre-process alignments (For each sample separately; parseAlignment)
- Stage 1: Estimate expression (For each sample separately; estimateExpression)
- Stage 2: Estimate variances, condition-specific expression and probability of differential expression (For all samples together; getVariance, estimateHyperPar, estimateDE)