Reliability and interpretation of

RNA-Seq expression profiles

Paweł P. Łabaj

Chair of Bioinformatics, Department of Biotechnology

Boku University Vienna

www.bioinf.boku.ac.at

Assessing measurement precision.

Characterization of established RNA-Seq pipelines

Beyond established approaches

Highly expressed transcripts and read depth

Studying differential signal readout by spike-in mixtures

NGS – 'new' measurement technology

Progress in science depends on *new techniques*, new discoveries, and new ideas ...

... probably in that order.

Sydney Brenner, 2002 Nobel Prize Winner

Accuracy vs precision

Little attention to measurement precision

 \rightarrow initial observations of overall good correlation

(Marioni et al. 2008, Wilhelm et al. 2008)

Correlation coefficient can be dominated by extreme values

 \rightarrow drawback of high dynamic range in RNA-Seq

Assessing expression reproducibility

Assessing expression reproducibility

Correlation[lin]: 91.9% Correlation[log/0]: 90.5%

Assessing expression reproducibility

Correlation[lin]: 47.3% Correlation[log/0]: 26.9%

Characterization of established RNA-Seq pipelines

Flood of read mapping tools

Years

Fonseca et al. (2012) Bioinformatics

Simple approach – eg. Bowtie / RPKM

- direct mapping to the transcript sequences
- use of the unique reads for assessing expression levels (RPKM)
 - $\rightarrow~$ exploits only $\sim~1$ in 5 mapped reads

		Bowtie (transcriptome)			
Replicate	Reads	Mapped reads	Align's	Unique reads	
1	340	168 (50%)	772	36 (11%)	
2	341	167 (49%)	776	35 (10%)	
3	311	152 (49%)	699	32 (10%)	
Total	993	487 (49%)	2237	103(10%)	
Quantifice	ation by			unique reads	

(human cell line sample, 50 bp ABI SOLiD 3+)

More advanced tools

Read – centric: assign probability for each read/fragment to one transcript by maximazing the joined likelihood of read alignments based on the distribution of transcript fragments \rightarrow estimating the transcript expression

Exon – centric: considers the read abundance on an exonic segment as the cumulative abundance of all transcript isoforms

More advanced tools

ALEXA - Seq

comprehensive target library from external databases

Griffith et al. 2010

NEUMA

expected read counts for all possible isoforms

Lee et al. 2010

TopHat + Cufflinks

can construct completely *de novo* gene models Trapnell *et al.* 2009, 2010, 2012

BitSeq

works directly on transcript expression estimates

Glaus et al. 2012

Characterization of the TopHat pipeline

- mapping to the genomic sequence
- *de novo* splice junctions discovery for building gene models
- allows use of all mapped reads for expression estimates

		Bowtie (transcriptome)			TopHat (genome)	
Replicate	Reads	Mapped reads	Align's	Unique reads	Mapped reads	Align's
1	340	168 (50%)	772	36 (11%)	172 (51%)	241
2	341	167 (49%)	776	35 (10%)	170 (50%)	238
3	311	152 (49%)	699	32 (10%)	155 (50%)	217
Total	993	487 (49%)	2237	(103)10%)	497 (50%)	695
Quantification by				unique reads	al	ignments

TopHat + Cufflinks +/- models

TopHat + Cufflinks +/- models

'reliable': < 20% relative error

Exploiting gene models at the alignment stage

Combined solution is much more sensitive in the identification of known **junctions**.

Exploiting gene models at the alignment stage

- most genes have alternative splice variants
- most reads map to more than one splicing variant
- often splice-junctions identify a specific splicing variant

Exploiting gene models at the alignment stage

Combined solution is much more sensitive in the identification of known **junctions**. These often play a *key role* in identifying the expression of a particular spliceform.

Reproducibility of quantitative expression profiling

Effects of highly expressed transcripts

Impact of read depth

point of diminishing returns

~20% actually not expressed

doubling sequencing depth → only 5% more reliable

Dominance of the sampling effect

Number of read alignments [millions]

RNA-Seq vs arrays

Summary and outlook

Exploiting gene models already at the alignment stage \rightarrow

~ 100,000 spliceforms identified (72% of all known)

```
~ 57,000 measured reliably (41%)
```

 \rightarrow an improvement of 50% !

Standard microarrays can reliably measure > 68,000 transcripts

 \rightarrow 20% more than RNA-Seq ...

A doubling of the sequencing depth

- changes little for the number of identified transcripts
- adds 5% to the number of transcripts that can be quantified reliably, with diminishing returns for higher sequencing depths

(... 75% of read alignments hit < 7% highly expressed transcripts!)

Falling costs

Sequencing Cost per Genome: 2001 to 2020

Sources: National Human Genome Research Institute and DailyFinance.com

Need to work smarter, not harder

A doubling of processing power every 14 months!

A doubling of storage capacity every 13 months!

A doubling of sequencing output every 5 months!

Sending data oversea by post faster than transferring via network !!!

Summary - combining complementary strengths

Acknowledgements

Chair of Bioinformatics: David Kreil Peter Sykacek Nancy Stralis-Pavese

MAQC consortium: Weida Tong Leming Shi Chris E. Mason

. . .

. . .

www.bioinf.boku.ac.at

EMSL, PNL: Bryan E. Linggi Lye Meng Markille H. Steven Wiley

Thank you for your interest.

Visit us at

www.bioinf.boku.ac.at

CAMDA2014

13th Annual International Conference on Critical Assessment of Massive Data Analysis

Boston, United States | July 11-12, 2014

Challenges:

- This year, CAMDA's scientific committee set up three challenges to integrate multi-track -omics data:
- dual dose response profiles for 14 unknown and 2 known compounds from the InnoMed PredTox project of the EU FP7 program,
- selected cancers from International Cancer Genome Consortium (ICGC), and
- the prediction of drug compatibility from an extremely large toxicogenomic data set

For additional information see:

http://www.camda.info (coming soon)

Chris Sander	Temple F. Sm	ith Jun Wang
Abstract Submissi	20 May 2014	
Poster Submission	25 May 2014	
Acceptance Notific	30 May 2014	
Early Registration	1 Jun 2014	
CAMDA2014 Cor	iference	11-12 Jul 2014
ISMB 2014 Confe	12-15 Jul 2014	
Full Paper Submis	sion	25 Aug 2014

Organizers

Djork-Arné Clevert, JKU Linz, Austria Joaquin Dopazo, CIPF, Spain Sepp Hochreiter, JKU Linz, Austria Lan Hu, Dana-Farber Cancer Institute, U.S.A. David Kreil, Boku University, Austria Simon Lin, Marshfield Clinic, U.S.A.

