
Eija Korpelainen

CSC – IT Center for Science, Finland

chipster@csc.fi

RNA-seq data analysis:
How to find differentially expressed genes?

http://www.csc.fi/suomi/info/index.phtml.fi


What will I learn?

➢ Introduction to RNA-seq

➢ How to operate the Chipster software used in the exercises

➢ Differential gene expression analysis

• Central concepts

• Analysis steps

• File formats
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Introduction to RNA-seq
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What can I investigate with RNA-seq?

➢ Differential gene expression

➢ Isoform switching

➢ New transcripts (and genes)

➢ New transcriptomes

➢ Variants

➢ Allele-specific expression

➢ Etc etc
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How was your data produced?

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html

PolyA purification

cDNA generation

& fragmentation 

Library construction

Size selection
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Differently sized fragments & inner 

distance

➢ Illumina reads are always of same length

➢ But the size of the initial RNA fragment (=insert) may vary

https://www.ecseq.com/support/ngs/why-do-the-reads-all-have-the-same-length-when-sequencing-differently-sized-fragments
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Stranded RNA-seq data

➢ Tells if a read maps to the same strand where the parental gene 

is, or to the opposite strand

• Useful information when a read maps to a genomic location where 

there is a gene on both strands

➢ Several lab methods, you need to know which one was used

• TruSeq stranded, NEB Ultra Directional, Agilent SureSelect

Strand-Specific…

read

read

Unstranded data: 

Does the read come 

from geneA or 

geneB?

Stranded data

→ the read comes 

from geneA
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Differential gene expression analysis
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DGE analysis: typical steps

Gene A

Align reads to 

reference genome

Match alignment positions 

with known gene positions

Count how many reads 

each gene has

Gene B

A = 6 B = 11

Compare sample groups: 

differential expression

analysis
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Gene B 11 11 10 3 4 2

Gene C 200 150 355 50 1 3

Gene D 0 1 0 2 0 1
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DGE analysis: steps, tools and files

gene A gene B

Alignment
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BAM

Quantitation

Differential 

expression 

analysis

Gene lists 

(TSV)

Pre-

processing

Quality control

Quality control

Quality control

FastQC

Trimmo-

matic

HISAT2

RSeQC

HTSeq

PCA, 

clustering

DESeq2,

edgeR

STEP         TOOL       FILE

Read count 

table (TSV)

FASTQFASTQFASTQ

BAMBAM

Read count  

file (TSV)
Read count  

file (TSV)
Read count  

file (TSV)

Combine 

count files to 

table

Define NGS 

experiment

FASTQFASTQFASTQ
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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What and why?

➢ Potential problems

• low confidence bases, Ns

• sequence specific bias, GC bias

• adapters

• sequence contamination

• …

Knowing about potential problems in your data allows you to

➢ correct for them before you spend a lot of time on analysis

➢ take them into account when interpreting results
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Software packages for quality control

➢ FastQC

➢ MultiQC

➢ FastX

➢ TagCleaner

➢ ...
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Raw reads: FASTQ file format

➢ Four lines per read:

@read name

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 

+ read name

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

➢ http://en.wikipedia.org/wiki/FASTQ_format

➢ Attention: Do not unzip FASTQ files

• Chipster’s analysis tools can cope with zipped files (.gz)
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Base qualities

➢ If the quality of a base is 20, the probability that it is wrong is 0.01.

• Phred quality score Q = -10 * log10 (probability that the base is wrong)

T  C  A  G  T  A  C  T  C  G

40 40 40 40 40 40 40 40 37 35

➢ ”Sanger” encoding: numbers are shown as ASCII characters

• Note that older Illumina data uses different encoding

Phred Quality 

Score

Probability of 

Incorrect Base 

Call

Base Call 

Accuracy

ASCII coding 

in FASTQ file

10 1 in 10 90% +

20 1 in 100 99% 5

30 1 in 1,000 99.9% ?

40 1 in 10,000 99.99% I
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Base quality encoding systems

http://en.wikipedia.org/wiki/FASTQ_format

http://www.csc.fi/suomi/info/index.phtml.fi


How to check read quality? 

➢ You can use FastQC either directly or via MultiQC

• If you have many samples, MultiQC is handier

➢ Reports many things, including 

• base quality

• base composition

• duplication

• Ns

• k-mers

• adaptors
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MultiQC

➢ Can combine info from many tools. 

• In Chipster it uses FastQC

➢ Features

• Interactive plots

• Traffic lights (they might not be suitable for your data!)

➢ Toolbox (click on the right side panel), allows you to

• Highlight samples

• Show only selected samples

• Download plots

• Rename samples

➢ Good tutorial video

• https://www.youtube.com/watch?v=qPbIlO_KWN0
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Per position base quality (FastQC)

good

ok

bad
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Per position base quality (FastQC)
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Per position base quality (MultiQC)
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Per position sequence content (FastQC)
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➢ Enrichment of k-mers at the 5’ end due to use of random 

hexamers or transposases in the library preparation

➢ Typical for RNA-seq data

➢ Can’t be corrected, doesn’t usually effect the analysis

Per position sequence content (FastQC)
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Sequence counts (MultiQC)
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Was your data made with stranded protocol?

➢ You need to indicate it when

• aligning reads to genome (e.g. HISAT2)

• counting reads per genes (e.g. HTSeq)

➢ If you don’t know which stranded sequencing protocol was

used, you can check it 

• Select your FASTQ file and run the tool Quality control / RNA-

seq strandedness inference with RSeQC

• Aligns a subset of the reads to genome and compares the 

locations to reference annotation

➢ For more info please see the manual

• http://chipster.csc.fi/manual/library-type-summary.html
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RSeQC strandedness report 
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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Filtering vs trimming

➢ Filtering removes the entire read 

➢ Trimming removes only the bad quality bases

• It can remove the entire read, if all bases are bad 

➢ Trimming makes reads shorter

• This might not be optimal for some applications

➢ Paired end data: the matching order of the reads in the two files 

has to be preserved

• If a read is removed, its pair has to removed as well
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What base quality threshold should be used?

➢ No consensus

➢ Trade-off between having good quality reads and having enough 

sequence

➢ Start with gentle trimming and check with FastQC
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Software packages for preprocessing

➢ Trimmomatic

➢ FastX

➢ TagCleaner

➢ ...
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Trimmomatic options in Chipster

➢ Adapters

➢ Minimum quality

• Per base, one base at a time or in a sliding window, from 3’ or 5’ 

end

• Per base adaptive quality trimming (balance length and errors)

• Minimum (mean) base quality

➢ Trim x bases from left/ right

➢ Minimum read length after trimming

➢ Copes with paired end data
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation
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Aligning reads to reference genome

➢ The goal is to find the location where the read originated from

➢ Challenges

• Reads contain genomic variants and sequencing errors

• Genomes contain non-unique sequence and introns

➢ RNA-seq aligner needs to be able to align splice junction spanning

reads to genome non-contiguously 

• Spliced alignments are difficult because sequence signals at splice 

sites are limited, and introns can be thousands of bases long

Modified from Kim et al (2015) Nature methods 12:358
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Alignment programs

➢ Many aligners have been developed over the years

• Convert genome fasta file to a data structure which is faster to 

search (e.g. BWT index or suffix array) 

• Differ in speed, memory requirements, accuracy and ability to deal 

with spliced alignments

➢ Use splice-aware aligner for mapping RNA-seq reads, for example

• STAR (fast and accurate, needs a lot of memory)

• HISAT2 (fast and accurate, creating the genomic index needs a LOT 

of memory)

• TopHat2 (slower, needs less memory)
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Splice-aware aligners in Chipster

➢ STAR

• Human, mouse & rat genomes available

➢ HISAT2

• Many genomes available

• You can also supply own reference genome if it is small

➢ TopHat2

• You can supply own reference genome

➢ Output files

• BAM = contains the read alignments 

• bai = index file for BAM, required by genome browsers etc

• log = useful information about the alignment run
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HISAT2

➢ HISAT = Hierarchical Indexing for Spliced Alignment of Transcripts

➢ Fast spliced aligner with low memory requirement

➢ Reference genome is (BWT FM) indexed for fast searching

• Currently Chipster offers human, mouse & rat reference genomes

• Let us know if you need others!

• You can provide own (small) reference genome in fasta format

➢ Uses two types of indexes

• A global index: used to anchor a read in genome (28 bp is enough)

• Thousands of small local indexes, each covering a genomic region 

of 56 Kbp: used for rapid extension of alignments (good for spliced 

reads with short anchors)

➢ Uses splice site information found during the alignment of earlier 

reads in the same run
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HISAT2 parameters

• If you have more than 2 FASTQ files per one sample, make file name lists for R1 and R2 files first

• Remember to set the strandedness correctly!

• Require long anchors (> 16 bp) if you are going to do transcript assembly

• Soft-clipping = read ends don’t need to align, if this maximizes the alignment score
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STAR

➢ STAR = Spliced Transcripts Alignment to a Reference

➢ Reference genome fasta is converted to a suffix array for fast 

searching

➢ 2-pass alignment process

• splice junctions found during the 1st pass are inserted into the 

genome index, and all reads are re-aligned in the 2nd mapping pass

• this doesn't increase the number of detected novel junctions, but it 

allows more spliced reads aligning to novel junctions.

➢ Maximum alignments per read -parameter sets the maximum 

number of loci the read is allowed to map to

• Alignments (all of them) will be output only if the read maps to no 

more loci than this. Otherwise no alignments will be output.

➢ Chipster offers an Ensembl GTF file to detect annotated splice 

junctions

• you can also give your own, e.g. GENCODE GTF
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If one sample has more than two FASTQ files

➢ E.g. Illumina NextSeq can produce 8 FASTQ files for each sample

➢ Put all the FASTQ files for the same sample in the same alignment

run (one job)

➢ Single end data: Select all the FASTQ files for the sample

➢ Paired end data: Make filename list files first
• Select all the read1 files and run the tool ”Utilities / Make a list of file names” 

• Repeat with all the read2 files

• Select all the FASTQ files and both filename list files and run HISAT2/STAR 

(check that the files have been assigned correctly)
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File format for mapped reads: BAM/SAM
➢ BAM is a compact binary file containing aligned reads. SAM (Sequence 

Alignment/Map) contains the same information in tab-delimited text.

➢ You can view BAM as text by running the tool Create a preview for BAM.

BAM header

alignment information: one line per read alignment, 

containing 11 mandatory fields, followed by optional tags

http://www.csc.fi/suomi/info/index.phtml.fi


Fields in BAM/SAM files

➢ read name HWI-EAS229_1:2:40:1280:283

➢ flag 272

➢ reference name 1

➢ position 18506

➢ mapping quality 0

➢ CIGAR 49M6183N26M

➢ mate name *

➢ mate position 0

➢ insert size 0

➢ sequence 

AGGGCCGATCTTGGTGCCATCCAGGGGGCCTCTACAAGGAT

AATCTGACCTGCTGAAGATGTCTCCAGAGACCTT

➢ base qualities 

ECC@EEF@EB:EECFEECCCBEEEE;>5;2FBB@FBFEEFCF@F

FFFCEFFFFEE>FFEFC=@A;@>1@6.+5/5

➢ tags MD:Z:75  NH:i:7 AS:i:-8 XS:A:-
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Mapping quality

➢ Confidence in read’s point of origin

➢ Depends on many things, including 

• uniqueness of the aligned region in the genome

• length of alignment

• number of mismatches and gaps

➢ Expressed in Phred scores, like base qualities 

• Q = -10 * log10 (probability that mapping location is wrong)

➢ Values differ in different aligners. E. g. unique mapping is

• 60 in HISAT2

• 255 in STAR

• 50 in TopHat

• https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-

but-their-implementation-is-a-mess/

http://www.csc.fi/suomi/info/index.phtml.fi


CIGAR string

➢ M = match or mismatch

➢ I = insertion

➢ D = deletion

➢ N = intron (in RNA-seq read alignments)

➢ S = soft clip (ignore these bases)

➢ H = hard clip (ignore and remove these bases)

➢ Example: 

@HD VN:1.3 SO:coordinate

@SQ SN:ref LN:45

r001  163  ref  7  30  8M2I4M1D3M   =   37   39   TTAGATAAAGGATACTG   *

• The corresponding alignment
Ref  AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

r001       TTAGATAAAGGATA*CTG
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Flag field in BAM

➢ Read’s flag number is a sum of values

• E.g. 4 = unmapped, 1024 = duplicate

• Explained in detail at http://samtools.github.io/hts-specs/SAMv1.pdf

• You can interpret them at 

http://broadinstitute.github.io/picard/explain-flags.html
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How did the alignment go? Check the log file

➢ How many reads aligned to the reference genome? 

• How many of them aligned uniquely? 

➢ How many read pairs aligned to the reference genome? 

• How many pairs aligned concordantly?

➢ What was the overall alignment rate?

http://www.csc.fi/suomi/info/index.phtml.fi


Log file by STAR
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Other tools for checking BAM files

➢ Count alignments in BAM

• How many alignments does the BAM contain. 

• Includes an optional mapping quality filter.

➢ Count alignments per chromosome in BAM

➢ Count alignment statistics for BAM

➢ Collect multiple metrics for BAM
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Tools for manipulating BAM files

➢ Make a subset of BAM

• Retrieve alignments for a given chromosome/region, e.g. chr1:100-

1000

• Can filter based on mapping quality

➢ Index BAM

➢ Convert SAM to BAM, sort and index BAM

• ”Preprocessing” when importing SAM/BAM, runs on your computer. 

• The tool available in the ”Utilities” category runs on the server

➢ Create a preview for BAM

• Creates a SAM file containing the BAM header and the first 200 

alignments. SAM is a text file so you can view it in Chipster.
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➢ Aligning reads to reference genome is slow → many quantitation

tools offer now lightweight ”mapping”. Different flavors: 

• selective alignment (Salmon)

• quasi-mapping (Sailfish, Salmon)

• pseudoalignment (kallisto)

➢ These tools match reads to transcripts and report transcripts that 

a read is compatible with (no base-to-base alignments)

• Difficult to assign reads to isoforms because they share exons, and 

technical biases cause non-uniform coverage

• Need complete transcriptome

➢ Srivastava et al 2019: Alignment and mapping methodology

influence transcript abundance estimation

• Quantification accuracy is better when using traditional alignments

Full alignment or lightweight mapping? 
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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Annotation-based quality metrics

➢ Saturation of sequencing depth

• Would more sequencing detect more genes and splice junctions?

➢ Read distribution between different genomic features

• Exonic, intronic, intergenic regions

• Coding, 3’ and 5’ UTR exons

• Protein coding genes, pseudogenes, rRNA, miRNA, etc

➢ Is read coverage uniform along transcripts?

• Biases introduced in library construction and sequencing

• polyA capture and polyT priming can cause 3’ bias

• random primers can cause sequence-specific bias

• GC-rich and GC-poor regions can be under-sampled

• Genomic regions have different mappabilities (uniqueness)
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➢ Checks coverage uniformity, saturation of sequencing depth, 

novelty of splice junctions, read distribution between different 

genomic regions, etc.

➢ Takes a BAM file and a BED file

• Chipster has BED files available for several organisms

• You can also use your own BED if you prefer

Quality assessment with RSeQC
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BED file format

➢ BED (Browser extensible data) file format is used for reporting 

location of features (e.g. genes and exons) in a genome

➢ 5 obligatory columns: chr, start, end, name, score

➢ 0-based, like BAM
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➢ RSeQC needs the same chromosome naming in BAM and BED

➢ Chromosome names in BED files can have the prefix “chr”

• e.g. chr1

➢ Chipster BAM files are Ensembl-based and don’t have the prefix

• If you use your own BED (e.g. from UCSC Table browser) you need 

to remove the prefix (chr1 → 1) 

➢ Use the tool Utilities / Modify text with the following parameters:

• Operation = Replace text

• Search string = chr

• Input file format = BED

Own BED? Check chromosome names
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QC tables by RSeQC
(alignment, actually…)

Default=30

Read A

Reference

Read A Read A

Total records:          7

Non primary hits:    4

Total reads:               3

Total tags: 8

Read B Read B

Read CRead A

http://www.csc.fi/suomi/info/index.phtml.fi


Splicing graphs by RSeQC

➢ Splicing junction = exon-exon junction covered by one or more reads

➢ Splicing event = a read is split across a splice junction
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Describing the experiment with phenodata

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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Software for counting reads per genes or

transcripts

➢ HTSeq

➢ StringTie

➢ Cufflinks

➢ Salmon

➢ Kallisto
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Counting reads per genes with HTSeq

➢ Given a BAM file and a GTF file with gene locations, counts how 

many reads map to each gene.

• A gene is considered as the union of all its exons. 

• Reads can be counted also per exons. 

➢ Chipster provides Ensembl GTF files, but you can give your own

• Note that GTF and BAM must use the same chromosome naming

• All exons of a gene must have the same gene_id (avoid UCSC GTFs)

➢ Multimapping reads and ambiguous reads are not counted

➢ 3 modes to handle reads which overlap several genes

• Union (default), Intersection-strict, Intersection-nonempty

➢ Attention: was your data made with stranded protocol?

• You need to select the right counting mode!
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Not unique or ambiguous?

Ambiguous

Stranded data

→ Not ambiguous

Multimapping

(not unique)

read A read A

read

read
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HTSeq count modes
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HTSeq result files: summary info and counts
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GTF file format

➢ 9 obligatory columns: chr, source, name, start, end, score, strand, 

frame, attribute

➢ 1-based

➢ For HTSeq to work, all exons of a gene must have the same gene_id

• Use GTFs from Ensembl, avoid UCSC

http://www.csc.fi/suomi/info/index.phtml.fi


Isoform switching can confound DGE analysis

➢ The number of reads obtained from an expressed gene depends on 

the transcript length

• Longer transcripts produce more fragments and hence more reads

➢ If a gene switches from a long transcript isoform to a short one, this 

can confound DGE analysis

Gene A

Transcript 1 (length L)

Transcript 2 (length 2L)

Control sample Cancer sample

Expression level of gene A is the same in both samples, but

cancer cells express the shorter isoform
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Isoform switching can confound DGE analysis

➢ The number of reads obtained from an expressed gene depends on 

the transcript length

• Longer transcripts produce more fragments and hence more reads

➢ If a gene switches from one transcript isoform to another one, this 

can confound DGE analysis

Gene A

Transcript 1 (length L)

Transcript 2 (length 2L)

Control sample Cancer sample

We get twice as many reads from the control sample

→ is gene A down-regulated in cancer?  
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Is isoform switching a major problem?

➢ The magnitude of the effect depends on 

• the extent of differential transcript usage (DTU)

• the difference in length between the differentially expressed isoforms.

• If the longer isoform is < 34% longer, false positives are controlled ok 

• Among all human transcript pairs in which both transcripts belong to the same 

gene, the median length ratio is 1.85

• For one third of such pairs the longer isoform is < 38% longer

➢ Many human genes express mainly one, dominant isoform

• → the global impact of isoform switching is relatively small in many 

real datasets (as opposed to simulated ones)

Soneson et al. F1000 Research 2016

http://www.csc.fi/suomi/info/index.phtml.fi


Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Describing the experiment with phenodata

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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Combine individual count files into a count table

➢ Select all the count files and run “Utilities / Define NGS experiment”

➢ This creates a table of counts and a phenodata file, where you can 

describe experimental groups

Read table 

(TSV, table)
phenodata

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

C
o

n
tr
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1

Gene A 6

Gene B 11

Gene C 200

Gene D 0
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o
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1

Gene A 6

Gene B 11

Gene C 200

Gene D 0
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1

Gene A 6

Gene B 11

Gene C 200

Gene D 0
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1
Gene A 6

Gene B 11

Gene C 200

Gene D 0
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Gene A 6

Gene B 11

Gene C 200

Gene D 0
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Gene A 6
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Gene C 200
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 1
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 2
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a
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p
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 3

Gene A 6 5 7 17 10 11

Gene B 11 11 10 3 4 2

Gene C 200 150 355 50 1 3

Gene D 0 1 0 2 0 1
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Phenodata file: describe the experiment

➢ Describe experimental groups, time, pairing etc with numbers

• e.g. 1 = control, 2 = cancer

➢ Define sample names for visualizations in the Description column

http://www.csc.fi/suomi/info/index.phtml.fi


Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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Experiment level quality control

➢ Getting an overview of similarities and dissimilarities

between samples allows you to check

• Do the experimental groups separate from each other?

• Is there a confounding factor (e.g. batch effect) that should be

taken into account in the statistical analysis?

• Are there sample outliers that should be removed?

➢ Several methods available

• MDS (multidimensional scaling)

• PCA (principal component analysis)

• Clustering
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PCA plot by DESeq2

➢ The first two principal

components, calculated

after variance stabilizing

transformation

➢ Indicates the proportion 

of variance explained by

each component

• If PC2 explains only a 

small percentage of  

variance, it can be 

ignored
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Sample heatmap by DESeq2

➢ Euclidean distances between the samples, calculated after

variance stabilizing transformation
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis

http://www.csc.fi/suomi/info/index.phtml.fi


Software packages for DE analysis

➢ edgeR

➢ DESeq2

➢ Sleuth

➢ DRIMSeq

➢ DEXSeq

➢ Cuffdiff, Ballgown

➢ Limma + voom, limma + vst

➢ ...
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Differential gene expression analysis

➢ Normalization

➢ Dispersion estimation

➢ Log fold change estimation

➢ Statistical testing

➢ Filtering

➢ Multiple testing correction
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Differential expression analysis:

Normalization

http://www.csc.fi/suomi/info/index.phtml.fi


Normalization

➢ For comparing gene expression between (groups of) samples, 

normalize for

• Library size (number of reads obtained)

• RNA composition effect

➢ The number of reads for a gene is also affected by transcript

length and GC content

• When studying differential gene expression we assume that they

stay the same
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Normalization by edgeR and DESeq

➢ Aim to make normalized counts for non-differentially 

expressed genes similar between samples

• Do not aim to adjust count distributions between samples

➢ Assume that

• Most genes are not differentially expressed

• Differentially expressed genes are divided equally between 

up- and down-regulation

➢ Do not transform data, but use normalization factors within 

statistical testing
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Normalization by edgeR and DESeq – how?

➢ DESeq(2)

• Take geometric mean of gene’s counts across all samples

• Divide gene’s counts in a sample by the geometric mean

• Take median of these ratios → sample’s normalization factor

(applied to read counts)

➢ edgeR

• Select as reference the sample whose upper quartile is closest to 

the mean upper quartile

• Log ratio of gene’s counts in sample vs reference → M value

• Take weighted trimmed mean of M-values (TMM) → normalization 

factor (applied to library sizes)
• Trim: Exclude genes with high counts or large differences in expression

• Weights are from the delta method on binomial data
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edgeR and DESeq2 expect raw read counts

➢ Raw counts are needed to assess the quantification uncertainty

➢ Uncertainty information is lost if counts are transformed to FPKM

• FPKM = fragments per kilobase per million mapped reads.

• Normalizes for gene length and library size. Example: 

• 20 kb transcript has 400 counts, library size is 20 million reads: FPKM = (400/20) / 20

• 0.5 kb transcript has 10 counts, library size is 20 million reads: FPKM = (10/0.5) / 20

→ in both cases FPKM =1, but it is less likely to get 400 reads just by chance

➢ The negative binomial assumption of edgeR and DESeq2 is flexible

enough to deal with gene-level counts summarized from Salmon’s

transcript-level abundance estimates
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Differential expression analysis:

Dispersion estimation
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Dispersion

➢ When comparing  gene’s expression levels between groups, it 

is important to know also its within-group variability

➢ Dispersion = (BCV)2

• BCV = gene’s biological coefficient of variation

• E.g. if gene’s expression typically differs from replicate to 

replicate by 20% (so BCV = 0.2), then this gene’s dispersion is 

0.22 = 0.04

➢ Note that the variability seen in counts is a sum of 2 things:

• Sample-to-sample variation (dispersion)

• Uncertainty in measuring expression by counting reads
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How to estimate dispersion reliably?

➢ We cannot typically afford tens or hundreds of biological

replicates

→ it is difficult to estimate within-group variability

➢ Solution: pool information across genes which are expressed

at similar level

• assumes that genes of similar average expression strength have 

similar dispersion

➢ Different approaches

• edgeR

• DESeq2
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Dispersion estimation by DESeq2

➢ Estimates genewise dispersions using maximum likelihood

➢ Fits a curve to capture the dependence of these estimates on 

the average expression strength

➢ Shrinks genewise values towards the curve using an empirical

Bayes approach

• The amount of shrinkage

depends on several things

including sample size

• Genes with high gene-wise

dispersion estimates are

dispersion outliers (blue

circles above the cloud) and 

they are not shrunk
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Differential expression analysis:

Statistical testing
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Generalized linear models

➢ Model the expression of each gene as a linear combination of 

explanatory factors (eg. group, time, patient)

• y = a + (b
.

group) + (c
.

time) + (d
.

patient) + e

y = gene’s expression

a, b, c and d = parameters estimated from the data

a = intercept (expression when factors are at reference level)

e = error term

➢ Generalized linear model (GLM) allows the expression value

distribution to be different from normal distribution

• Negative binomial distribution used for count data
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Statistical testing

➢ DESeq2

• Generalized linear model, Wald test for significance

• Log fold change is divided by its standard error and the resulting z 

statistic is compared to a standard normal distribution

➢ edgeR

• Two group comparisons

• Exact test for negative binomial distribution

• Multifactor experiments

• Generalized linear model, likelyhood ratio test
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DESeq2 shrinks log2 fold changes estimates

➢ uses the ashr (Adaptive SHRinkage) method

• the amount of shrinkage is determined from the data

• measurements with high standard error will undergo more shrinkage

• https://github.com/stephens999/ashr
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Multiple testing correction

➢ We test thousands of genes, so it is possible that some genes

get good p-values just by chance

• This problem is much bigger, if you test transcripts (DTE)

➢ To control this problem of false positives, p-values need to be

corrected for multiple testing

➢ Several methods are available, the most popular one is the

Benjamini-Hochberg correction (BH)

• largest p-value is not corrected

• second largest p = (p *n)/ (n-1)

• third largest p = (p * n)/(n-2)

• …

• smallest p = (p * n)/(n- n+1) = p * n

➢ The adjusted p-value is FDR (false discovery rate)
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Filtering

➢ Reduces the severity of multiple testing correction by

removing some genes (makes n smaller)

➢ Filter out genes which have little chance of showing

evidence for significant differential expression

• genes which are not expressed

• genes which are expressed at very low level (low counts are

unreliable)

➢ Should be independent

• do not use information on what group the sample belongs to

➢ DESeq2 selects filtering threshold automatically

http://www.csc.fi/suomi/info/index.phtml.fi


edgeR result table

➢ logFC = log2 fold change

➢ logCPM = average log2 counts per million

➢ Pvalue = raw p-value

➢ FDR = false discovery rate (Benjamini-Hochberg adjusted p-

value)
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DESeq2 result table

➢ baseMean = mean of counts (divided by size factors) taken 

over all samples

➢ log2FoldChange = log2 of the ratio meanB/meanA

➢ lfcSE = standard error of log2 fold change

➢ stat = Wald statistic

➢ pvalue = raw p-value

➢ padj = Benjamini-Hochberg adjusted p-value
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Interactive Venn diagram

➢ You can compare result files, e.g. were the same genes found

• Select 2-3 tsv files and click Draw

➢ Make a new gene list

• Click on the image to select an area (e.g. the intersection) and click

Create file → new gene list appears

• If the files have columns with the same name (e.g. padj), the values

to the new gene list are taken from the input file that you selected first
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Heatmap of differentially expressed genes
➢ Use the tool Heatmap for RNA-seq results

➢ Counts are transformed using variance stabilization transformation

• calculated using the experiment-wide trend of variance over mean

→ You need to give 2 input files: the original count table and the list of 

differentially expressed genes. Check that they are correctly assigned!

http://www.csc.fi/suomi/info/index.phtml.fi


What if I have several experimental factors?

➢ The tool Differential expression using edgeR for multivariate

experiments can cope with 3 main effects and pairing

➢ Main effects can be treated as 

• Linear = is there a trend towards higher numbers?

• Factor = are there differences between the levels?

If the main effect has only two levels (e.g. control and cancer), selecting linear

or factor gives the same result

➢ Note that the result table contains all the genes, so in order to get the

differentially expressed genes you have to filter it

• Use the tool Utilities / Filter using a column value

• Select the FDR column that corresponds to the comparison of your interest
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Analyzing differential gene expression:

things to take into account

➢ Biological replicates are important!

➢ Normalization is required in order to compare expression

between samples

• Different library sizes

• RNA composition bias caused by sampling approach

➢ Raw counts are needed to assess measurement precision

• Counts are the ”the units of evidence” for expression

• Gene-level counts summarized from Salmon’s transcript-level

estimates seem to be ok

➢ Multiple testing problem
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation of gene identifiers

➢ Pathway analysis

http://www.csc.fi/suomi/info/index.phtml.fi


Add gene symbols and descriptions to data

➢ Tool Utilities / Annotate Ensembl identifiers

• Ensembl IDs can be 

• in the first column, with or without a title

• in the middle of the file if the column title is ensembl_id

• Fetches annotations from the EBI

• Max100 000 Ensembl IDs can be annotated in one job
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Summary of DGE analysis steps and files

➢ Quality control / Read quality with MultiQC → html report

➢ (Preprocessing / Trim reads with Trimmomatic → FASTQ)

➢ (Utilities / Make a list of file names → txt)

➢ Alignment / HISAT2 or STAR → BAM

➢ Quality control / RNA-seq quality metrics with RSeQC → pdf

➢ RNA-seq / Count aligned reads per genes with HTSeq → tsv

➢ Utilities / Define NGS experiment → tsv

➢ Quality control / PCA and heatmap of samples with DESeq2 → pdf

➢ RNA-seq / Differential expression using DESeq2 → tsv

➢ Utilities / Annotate Ensembl identifiers → tsv
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Data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Annotation

➢ Pathway analysis
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Pathway analysis – why?

➢ Statistical tests can yield thousands of differentially expressed

genes

➢ It is difficult to make ”biological” sense out of the result list

➢ Looking at the bigger picture can be helpful, e.g. which pathways

are differentially expressed between the experimental groups

➢ Databases such as KEGG, GO, Reactome and ConsensusPathDB

provide grouping of genes to pathways, biological processes, 

molecular functions, etc
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Gene set enrichment analysis

Apoptosis (200 genes)

Our list (50 genes)

Genome (30,000 genes)

Our list and apoptosis (10 genes)

H0 :                  = 30 >> 1
50
10____

_______

30000
200____

1. Perform a statistical test to find differentially expressed genes

2. Check if the list of differentially expressed genes is ”enriched” 

for some pathways
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ConsensusPathDB

➢ One-stop shop: Integrates pathway information from 32 

databases covering 

• biochemical pathways

• protein-protein, genetic, metabolic, signaling, gene regulatory 

and drug-target interactions

➢ Developed by Ralf Herwig’s group at the Max-Planck Institute 

in Berlin

➢ ConsensusPathDB over-representation analysis tool is 

integrated in Chipster

• runs on the MPI server in Berlin
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Design of experiments
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When planning an experiment, consider

➢ The number of biological replicates needed. Depends on

• Biological variability and technical noise

• Expression level, fold change and sequencing depth

➢ Sample pairing

➢ Sequencing decisions

• Number of reads per sample

• Read length (longer is better)

• Paired end or single end (PE is better)

• Stranded or unstranded (stranded is better)

• Batch effects
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How many biological replicates?

➢ Publication quality data needs at least 3 biological replicates 

per sample group 

• This can be sufficient for cell-cultures and/or test animals

➢ More reasonable numbers:

• Cell cultures / test animals: 3 is minimum, 4-5 OK, >7 excellent

• Patients: 3 is minimum, 10-20 OK, >50 good

• Power analysis can be used to estimate sample sizes
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How many reads per sample do I need?

➢ Depends on the transcriptome and the analysis goal

• Differential expression 10-25 M reads 

• Allele specific expression 50-100 M

• Alternative splicing 50-100 M

• De novo assembly >100 M

https://genohub.com/recommended-sequencing-coverage-by-application/ 
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More reads or more replicate samples?

Conesa et al 2016: A survey of best practices for RNA-seq data analysis. Genome Biology 17:13
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Balance sample groups across batches

➢ You can’t account for a batch effect if all your control samples 

were run in one batch and the drug samples in the other

• DESeq2 would give an error: ”The model matrix is not full rank”

➢ Balance sample groups cross batches

sample batch treatment

1 1 control

2 1 control

3 1 control

4 1 control

5 2 drug

6 2 drug

7 2 drug

8 2 drug

sample batch treatment

1 1 control

2 1 control

5 1 drug

6 1 drug

3 2 control

4 2 control

7 2 drug

8 2 drug

Case: You have 8 samples, 4 controls and 4 treated samples. There will be 2 

batches in the sequencing run. How do you form the batches?

Option A: Option B:
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Paired samples

➢ Individual variation can be tackled using a matched control

• Before and after treatment samples from the same patient

• Tumor vs. normal samples from the same patient

Pre treatment

samples

Post treatment

samples

P1    P2     P3    P4    P5     P6 

P1    P2    P3     P4    P5     P6 

P1    P2     P3    P4    P5     P6 

P1    P2    P3     P4    P5     P6 

Case : 6 patients, 2 samples from each. You can afford to sequence only 6 

samples. Which option do you choose?

Option A: Option B:
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Pooling

➢ When possible, measure each sample on its own

• Pool only if there is not enough material to run the samples

individually)

➢ If one of your samples is an outlier or has a contamination, the

whole pool is unusable

Cell culture:       1       2       3      4       5       6       7       8       9
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Pooling

➢ Make pools as similar as possible

➢ Avoid pooling of samples of similar type into

one pool

F      F     F      M     M     M     F      F      F F      M     F      F      M      F      F      F      M

Option A: Option B:

Case: We have 9 control samples, 6 samples from females and 3 

from males. We need to pool 3 samples together. How do we do it?
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