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Understanding data analysis - why?

➢ Bioinformaticians might not always be available when needed

➢ Biologists know their own experiments best

• Biology involved (e.g. genes, pathways, etc)

• Potential batch effects etc

➢ Allows you to design experiments better

• Enough replicates, reads etc → less money wasted

➢ Allows you to discuss more easily with bioinformaticians



What will I learn?

➢ How to operate the Chipster software

➢ How to analyze microarray data

• Central concepts

• Analysis workflow

• What happens in the different analysis steps

➢ How to analyze RNA-seq data

• Short introduction to analysis workflow and central concepts



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Introduction to Chipster



➢ Provides an easy access to over 450 analysis tools

• No programming or command line experience 
required

➢ Free, open source software

➢ What can I do with Chipster?

• analyze and integrate high-throughput data

• visualize data efficiently

• share analysis sessions

• save and share automatic workflows

Chipster



Analysis tools

➢ 260 NGS tools for

• RNA-seq

• single cell RNA-seq

• miRNA-seq

• exome/genome-seq

• ChIP-seq

• FAIRE/DNase-seq

• CNA-seq

• 16S rRNA sequencing

➢ 140 microarray tools for

• gene expression

• miRNA expression

• protein expression

• aCGH

• SNP

• integration of different data

➢ 60 tools for sequence analysis

• BLAST, EMBOSS, MAFFT

• Phylip







Mode of operation 
Select: data → tool category → tool → run → visualize



When running analysis tools, pay attention to 

parameters!

➢ make sure the input files are correctly assigned if there are 

multiple files (see below)

➢ choose the right reference genome

➢ check especially the bolded parameters



Job manager

➢ You can run many analysis jobs at the same time

➢ Use Job manager to

• view status

• cancel jobs

• view time 

• view parameters



Analysis history is saved automatically 
-you can add tool source code to reports if needed



Analysis sessions

➢ Remember to save the analysis session within 3 days 

• Session includes all the files, their relationships and metadata (what 

tool and parameters were used to produce each file)

• Session is a single .zip file

• Note that you can save two sessions of the same data

• one with raw data (FASTQ files) and one smaller, working version where the 

FASTQ files are deleted after alignment 

➢ You can save a session locally (= on your computer)

➢ and in the cloud

• but note that the cloud sessions are not stored forever!

• If your analysis job takes a long time, you don’t need to keep 

Chipster open: 

• Wait that the data transfer to the server has completed (job status = running)

• Save the session in the cloud and close Chipster

• Open Chipster within 3 days and save the session containing the results



Workflow panel

➢ Shows the relationships of the files

➢ You can move the boxes around, and zoom in and out.

➢ Several files can be selected by keeping the Ctrl key down

➢ Right clicking on the data file allows you to 

• Save an individual result file (”Export”)  

• Delete

• Link to another data file

• Save workflow



Workflow – reusing and sharing your 

analysis pipeline

➢ You can save your analysis steps as a reusable automatic 

”macro”, which you can apply to another dataset

➢ When you save a workflow, all the analysis steps and their 

parameters are saved as a script file, which you can share with 

other users



Saving and using workflows

➢ Select the starting point for your 

workflow

➢ Select ”Workflow/ Save starting 

from selected”

➢ Save the workflow file on your 

computer with a meaningful name 

• Don’t change the ending (.bsh)

➢ To run a workflow, select

• Workflow->Open and run

• Workflow->Run recent (if you 

saved the workflow recently). 



Visualizing the data

➢ Data visualization panel

• Maximize and redraw for better viewing

• Detach = open in a separate window, allows you to view several 
images at the same time

➢ Two types of visualizations

1. Interactive visualizations produced by the client program

• Select the visualization method from the pulldown menu

• Save by right clicking on the image

2. Static images produced by analysis tools

• Select from Analysis tools/ Visualisation

• View by double clicking on the image file

• Save by right clicking on the file name and choosing ”Export”



Interactive visualizations by the client

➢ Genome browser

➢ Spreadsheet

➢ Histogram

➢ Venn diagram

➢ Scatterplot

➢ 3D scatterplot

➢ Volcano plot

➢ Expression profiles

➢ Clustered profiles

➢ Hierarchical clustering

➢ SOM clustering

Available actions:

• Select genes and create a gene list

• Change titles, colors etc

• Zoom in/out





Static images produced by R/Bioconductor

➢ Dispersion plot

➢ Heatmap

➢ tSNE plot

➢ Violin plot

➢ PCA plot

➢ MA plot

➢ MDS plot

➢ Box plot

➢ Histogram

➢ Dendrogram

➢ K-means clustering

➢ etc…



Options for importing data to Chipster

➢ Import files/ Import folder

➢ Import from URL

• Utilities / Download file from URL directly to server

➢ Open an analysis session

• Files / Open session

➢ Import from BaseSpace

➢ Import from ENA 

➢ Import from SRA database

• Utilities / Retrieve FASTQ or BAM files from SRA

➢ Import from Ensembl database

• Utilities / Retrieve data for a given organism in Ensembl

➢ What kind of data files can I use in Chipster?

• Compressed files (.gz) are ok

• FASTQ, BAM, read count files (.tsv), GTF



How to import a tar package containing many files 

and use only some of them?

➢ Import the tar package 

• File / Import from / URL directly to server 

➢ Check what files it contains 

• Utilities / List contents of a tar file 

➢ Selectively extract the files you want 

• Utilities / Extract .tar or .tar.gz file

2

3



Problems? Send us a support request 
-request includes the error message and link to analysis 

session (optional)



Acknowledgements to Chipster users and contibutors

➢ Users’ feedback and ideas have really helped us to shape the 

software over the years. Let us know what needs to be improved!



More info

➢ chipster@csc.fi

➢ http://chipster.csc.fi

➢ YouTube channel Chipster tutorials

➢ https://chipster.csc.fi/manual/courses.html



Microarray data analysis



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Importing data

➢ Affymetrix

• CEL-files are recognized by Chipster automatically

➢ Illumina: two importing options

1. Import the GenomeStudio file as it is

• All the samples need to be in one file. 

• Need columns AVG, BEAD_STDERR, Avg_NBEADS and 

DetectionPval

• When imported this way, the data has to be normalized in Chipster

using the lumi method

2. Use Import tool to define the sample columns in the file(s)

• Use the tool ”Normalization / Illumina” to normalize the data

→ The import option influences your normalization options later

➢ Agilent (and any other tab delimited files)

• Use Import tool to define the sample columns



1. Import tool: Select what to do



2. Import tool: Define rows (header, title, etc)



3. Import tool: Define columns (identifier,sample)



Import tool - which columns should I mark?

➢ http://chipster.csc.fi/manual/import-help.html

➢ Agilent

• Identifier (ProbeName, in case of miRNA arrays use GeneName)

• Annotation (Control type)

• Sample (rMeanSignal or rMedianSignal) 

• Sample background (rBGMedianSignal) 

• Control (gMeanSignal or gMedianSignal) 

• Control background (gBGMedianSignal)

➢ Illumina BeadStudio version 3 file and GenomeStudio files

• Identifier (ProbeID)

• Sample (text “AVG”)

➢ Illumina BeadStudio version 1-2 file

• Identifier (TargetID)

• Sample (text “AVG”)

1-color
2-color



Importing normalized data

➢ The data should be tab delimited and preferably log-transformed

• If your data is not log-transformed, you can transform it with the tool 

“Change interpretation”

➢ Import the data file to Chipster using the Import tool. Mark the 

identifier column and all the sample columns.

➢ Run the tool Normalize / Process prenormalized. This

• Converts data to Chipster format by adding ”chip.” to  expression 

column names

• Creates the phenodata file. You need to indicate the chiptype using 

names given at http://chipster.csc.fi/manual/supported-chips.html



Exercise 1. Start Chipster and open a session 

with Affymetrix .CEL-files

➢ Log in to Chipster

➢ Open session containing course data

• Select Open local session and choose Affymetrix_kidney_cancer. 

The course data contains 17 samples from a kidney cancer study, 

measured using Affymetrix U133A chips. We want to find genes which 

are differentially expressed in cancer vs normal tissue.



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Normalization

➢ The goal is to make the arrays comparable to each other

• Makes the expression value distributions similar

• Assumes that most genes don’t change expression

➢ After normalization the expression values are in log2-scale

• Hence for example a fold change of 2 means 4-fold up



Normalization of Affymetrix data

➢ Normalization = background correction + expression estimation + summarization

➢ Methods

• RMA (Robust Multichip Averaging) uses only PM probes, fits a model to them, and 

gives out expression values after quantile normalization and median polishing. 

Works nicely if you have more than a few chips

• GCRMA is similar to RMA, but takes also GC% content into account

• MAS5 is the older Affymetrix method, Plier is a newer one

• Li-Wong is the method implemented in dChip

➢ Custom chiptype parameter to use remapped probe information

• Because some of the Affymetrix probe-to-transcript mappings can be outdated, 

probes have been remapped in the Bioconductor project. 

• To use these remappings (alt CDF environments), select the matching chiptype from

the Custom chiptype menu.

➢ Variance stabilization option makes the variance similar over all the chips 

• Works only with MAS5 and Plier (the other methods log2-transform the data, which

corrects for the same phenomenon)



Quantile normalization procedure

Sample A Sample B Sample C

Gene 1 20 10 350

Gene 2 100 500 200

Gene 3 300 400 30

Sample A Sample B Sample C Median

Quantile 1 20 10 30 20

Quantile 2 100 400 200 200

Quantile 3 300 500 350 350

Sample A Sample B Sample C Median

Quantile 1 20 20 20 20

Quantile 2 200 200 200 200

Quantile 3 350 350 350 350

Sample A Sample B Sample C

Gene 1 20 20 350

Gene 2 200 350 200

Gene 3 350 200 20

1. Raw data

2. Rank data within sample and 
calculate median intensity for 
each row

3. Replace the raw data of each 
row with its median (or mean) 
intensity

4. Restore the original gene 
order



Normalization of Agilent data

➢ Background correction + averaging duplicate spots + normalization

➢ Background subtraction often generates negative values, which are coded

as missing values after log2-transformation.

• Using normexp + offset 50 will not generate negative values, and it gives

good estimates

➢ Loess removes curvature from the data (recommended)

Before After



Agilent normalization parameters in Chipster

➢ Background treatment

• Normexp, Subtract, Edwards, None

➢ Background offset

• 50 or 0

➢ Normalize chips

• Loess, median, none

➢ Chiptype

• You must give this information in order to use annotation-based

tools later

➢ Normalize genes

• None, scale (to median), quantile

• not needed for statistical analysis



Illumina normalization: two analysis tools

1. Illumina

• Normalization method
Quantile, vsn (variance stabilizing normalization), scale, none

• Illumina software version
GenomeStudio or BeadStudio3, BeadStudio2, BeadStudio1

• Chiptype

• Identifier type
Probe ID (for BeadStudio version 3 data and newer), Target ID 

2. Lumi pipeline (data needs to be in one file, imported directly!)

• Normalization method
Quantile, vsn, rsn (robust spline normalization), loess, none

• Transformation
Log2, vst (variance stabilizing transformation), none

• Chiptype
human, mouse, rat

• Background correction (usually done already in GenomeStudio)
none, bgAdjust.Affy



Checking normalization



Exercise 2: Normalize Affymetrix data

➢ Select all the CEL files by clicking on the box ”17” in the Workflow view

➢ Select the tool Normalisation / Affymetrix, click Show parameters, set 

Custom CDF annotation to be used = hgu133A, and click Run. 

➢ Repeat the process by setting Custom CDF annotation to be used = Use 

original Affymetrix annotations. When the result file normalized.tsv comes, 

rename it to original_normalized.tsv

➢ Open both normalized files and compare them. Do they have the same 

number of genes (rows)?



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Phenodata file

➢ Experimental setup is described with a phenodata file, which is created during 

normalization

➢ Fill in the group column with numbers describing your experimental groups

• e.g. 1 = control sample, 2 = cancer sample

• necessary for the statistical tests to work

• note that you can sort a column by clicking on its title

➢ Change sample names in Description column for visualizations



How to describe pairing, replicates, time, etc? 

➢ You can add new columns to the phenodata file

➢ How to describe different variables

• Time: Use either real time values or recode with group codes

• Replicates: All the replicates are coded with the same number 

• Pairing: Pairs are coded using the same number for each pair

• Gender: Use numbers

• Anything else: Use numbers



Creating phenodata for normalized data

➢ When you import data which has been already normalized, you need 

to create a phenodata file for it

• Use Import tool to bring the data in

• Use the tool Normalize / Process prenormalized to create phenodata

• Remember to give the chiptype

• Fill in the group column

➢ Note: If you already have a phenodata file, you can import it too

• Choose ”Import directly” in the Import tool

• Right click on normalized data, choose ”Link to phenodata”



Exercise 3: Describe the experiment

➢ Double click the phenodata file of the normalized.tsv

➢ In the phenodata editor, fill in the group column so that you enter 

• 1 for normal samples

• 2 for cancer samples

➢ For the interest of visualizations later on, give shorter names for the 

samples in the Description column

• Name the normal samples n1, n2,…

• Name the cancer samples c1, c2 ,…



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Array level quality control

➢ Allows you to check if arrays are comparable to each other

➢ Tools in Chipster

• Affymetrix basic: RNA degradation and Affy QC

• Affymetrix RLE and NUSE: fit a model to expression values

• Agilent 1-color: density plot and boxplot

• Agilent 2-color: MA-plot, density plot and boxplot

• Illumina: density plot and boxplot



Affymetrix array level QC tools

➢ Note that these tools use raw data (CEL files), not normalized data

➢ Affymetrix basic

• Produces 3 plots:

• QC stats plot

• RNA degradation plot

• Spike-in controls linearity plot

• Note that this tool uses the original probe set definitions from 

Affymetrix, not the alternative CDFs

➢ Affymetrix RLE and NUSE

• RLE (relative log expression)

• NUSE (normalized unscaled standard error plot)

➢ Affymetrix RLE and NUSE for exon/gene arrays



Relative log expression, RLE

➢ RLE is the difference between log

summarized expression of each

chip to the log summarized

expression on the median chip

values.

➢ Boxes should be centered near 0

and have similar spread.



Normalized Unscaled Standard Error, NUSE

➢ NUSE is the individual probe error

fitting the Probe-Level Model.

➢ Good chips have median values

close to one, while bad ones are

above 1.1.

➢ Check also if some chips show

higher spread of NUSE distri-

bution than others.



Affymetrix QC

Blue area shows where scaling 

factors are less than 3-fold of the 

mean. 

•If the scaling factors or ratios fall 

within this region (1.25-fold for 

GAPDH), they are colored blue, 

otherwise red

average background on the chip

Proportion of probesets with 

present flag

scaling factors for the chips

beta-actin 3':5' ratio

GAPDH 3':5' ratio



Affymetrix spike-ins and RNA degradation

Spike-in linearity RNA degradation plot



Density plot and box plot



➢ Scatter plot of log intensity ratios M=log2(R/G) versus average log intensities 

A = log2 (R*G), where R and G are the intensities for the sample and control, 

respectively

➢ M is a mnemonic for minus, as M = log R – log G

➢ A is mnemonic for add, as A = (log R + log G) / 2

Agilent QC: MA-plot



Exercise 4: Affymetrix array level quality control

➢ Select the 17 CEL files and run the tool Quality control / Affymetrix basic.

Please note that this tool uses the original probe set definitions from 

Affymetrix

• Inspect the three pdf image files. Are there outlier samples?

➢ Select the 17 CEL files and run the tool Quality control / Affymetrix – using 

RLE and NUSE setting Custom chiptype = hgu133ahsentrezg(hgu133a)

• Inspect the RLE and NUSE images. Are there outlier samples?

➢ Select normalized.tsv and run the tool Quality control / Illumina which 

produces a boxplot and density plot

• Inspect the plots. Are there outlier samples?



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Experiment level quality control

➢ Getting an overview of similarities and dissimilarities 

between samples allows you to check

• Do the experimental groups separate from each other?

• Is there a confounding factor (e.g. batch effect) that should be 

taken into account in the statistical analysis?

• Are there sample outliers that should be removed?

➢ Several methods available

• NMDS (non-metric multidimentional scaling)

• PCA (principal component analysis)

• Clustering

• Dendrogram

• Correlogram



Non-metric multidimensional scaling (NMDS)

➢ Method

• Computes a distance matrix

for all genes

• Constructs the dimensions so

that the similarity of distances

between the original and the

2-dimensional space is 

maximized

➢ Goal is to reduce dimensions from several thousands to two

• High dimensional space is projected into a 2-dimensional space

➢ Check that the experimental groups separate on dimension 1

• Do the samples separate according to something else on dimension 2?



Principal component analysis (PCA)

➢ Goal is to reduce dimensions

• High dimensional space is projected into a lower dimensional space

➢ Check the percentage of variance explained by each component

• If PC2 explains only a small percentage of variance, it can be ignored.

➢ Method

• Computes a variance-covariance

matrix for all genes

• PC1, the first principal

component, is the linear

combination of variables that

maximizes the variance

• PC2 is a linear combination

orthogonal to the previous one

which maximizes variance.

• etc
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Dendrogram

Dendrogram



Exercise 5: Experiment level quality control

➢ Run Statistics / NMDS for the normalized data (normalized.tsv)

• Do the groups separate along the first dimension?

➢ Run Statistics / PCA on the normalized data. 

• View pca.tsv as 3D scatter plot for PCA. Can you see 2 groups?

• Check in variance.tsv how much variance the first principal 

component explains? And the second one?

➢ Run Visualization / Dendrogram for the normalized data

• Do the groups separate well?

➢ Save the analysis session with name sessionKidneyCancer.zip



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Filtering

➢ Why? 

• Reducing the number of genes tested for differential expression 

reduces the severity of multiple testing correction of p-values. As 

the p-values remain better, we detect more differentially expressed 

genes.

➢ Why not?

• Some statistical testing methods (inc. the empirical Bayes option 

in Chipster) need many genes, because they estimate variance by 

borrowing information from other genes which are expressed at 

similar level. Hence the more genes the better.

➢ Filtering should 

• remove genes which don’t have any chance of being differentially 

expressed: genes that are not expressed or don’t change

• be independent: should not use the sample group information



Filtering tools in Chipster

➢ Filter by standard deviation (SD)

• Select the percentage of genes to be filtered out

➢ Filter by coefficient of variation (CV = SD / mean)

• Select the percentage of genes to be filtered out

➢ Filter by interquartile range (IQR)

• Select the IQR

➢ Filter by expression

• Select the upper and lower cut-offs

• Select the number of chips required to fulfil this rule

➢ Filter by flag (Affymetrix P, M and A flags)

• Flag value and number of arrays



Exercise 6: Filtering

➢ Select the normalized data and play with the SD filter and CV filter.

• Set the cutoffs so that you filter out 90% of genes (Percentage to 

filter out = 0.9). 

• Preprocessing / Filter by standard deviation

• Preprocessing / Filter by coefficient of variation

➢ Select the result files and compare them using the interactive Venn 

diagram visualization 

• Save the genes specific to SD filter to a new file. Rename it sd.tsv.

• Save the genes specific to CV filter to a new file. Rename it cv.tsv.

• View both as expression profiles. Is there a difference in expression 

levels of the two sets?



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Statistical analysis: Why?

➢ Distinguish the treatment effect from biological variability and 

measurement noise

➢ Generalisation of results

• replicates

• estimation of uncertainty (variability)

• representative sample

• statistical inference

sampling inference



➢ Comparing means of 1-2 groups

• student’s t-test

➢ Comparing means of more than 2 groups

• 1-way ANOVA

➢ Comparing means in a multifactor experiment

• 2-way ANOVA
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Parametric statistics
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Non-parametric statistical methods

Ranks
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➢ Comparing ranks of 2 groups

• Mann-Whitney

➢ Comparing ranks of more than 2 groups

• Kruskal-Wallis
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Benefits

Non-parametric tests compared to parametric

Drawbacks

• Do not make any assumptions on data distribution

 robust to outliers

 allow for cross-experiment comparisons

• Lower power than parametric counterpart

• Granular distribution of calculated statistic

 many genes get the same rank

 requires at least 6 samples / group



➢ Need more accurate estimates of variability and effect size

➢ Improved analysis methods

• Variance shrinking: Empirical Bayes method

• Partitioning variability: ANOVA, linear modeling

➢ Improved experimental design

• Increase number of biological replicates

• Use paired samples if possible

• Randomization

• Blocking

How to improve statistical power?



Pairing = matched samples from the same individual

Unpaired analysis

Before After

2 3

2 4

3 2

1 3

2 3

0.8 0.8

Mean

Stdev

Before After Difference

2 3 1

2 3 1

3 4 1

1 2 1

Paired analysis



Improving power with variance shrinking

➢ Concept

• Borrow information from other genes which are expressed at 

similar level, and form a pooled error estimate

➢ How?

• models the error - intensity dependence by comparing replicates

• uses a smoothing function to estimate the error for any given

intensity

• calculates a weighted average between the observed gene

specific variance and the model-derived variance (pooling)

• incorporates the pooled variance estimate in the statistical test

(usually t- or F-test)

➢ Available in Chipster

• Two group test: Select empirical Bayes as the test

• Linear modeling tool



Exercise 7: Statistical testing

➢ Run different two group tests

• Select the file normalized.tsv and Statistics / Two group test. What 
is the default value of the parameter “test”? How many differentially
expressed genes do you get?

• Repeat the run but change test = t-test. Rename the result file to 
t.tsv. How many differentially expressed genes do you get now?

• Repeat the run but change test = Mann-Whitney. Rename the result
file to MW.tsv. How many differentially expressed genes do you get
now?

➢ Compare the results with a Venn diagram

• Do the gene lists overlap?



Exercise 8: Visualize and filter results

➢ Filter genes based on fold change 

• Select two-sample.tsv and the tool Utilities / Filter using a 
column value. Keep genes whose expression changes more 
than 4-fold:

• Column = FC 

• Cut-off = 2 (remember that the fold change values are in log2 scale)

• Smaller or larger = outside (we want both up and down-regulated genes)

➢ View results in interactive visualizations

• Select the column-value-filter.tsv and visualization method 
Volcano plot

• Visualize the file also as Expression profile



Exercise 9: Use paired samples in testing

➢ Use pre-filled phenodata which contains more information about 
the samples

• Select normalized.tsv and phenodata.tsv, right click, and select 
Links between selected / Unlink.

• Select normalized.tsv and right click to link it to 
phenodata_moreSampleInfo.

• Inspect the new phenodata for sample information. Note that sample 
pairing information is in the patient column.

➢ Repeat statistical testing so that you include pairing information

• Select the file normalized.tsv and Statistics / Two group test and 
set the parameter Column with pairing information = patient.

• Does the number of differentially expressed genes change?

• Rename the result file to paired.tsv



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Linear modeling

➢ Models the expression of a gene as a linear combination of 

explanatory factors (e.g. group, gender, time, patient,…)

y = a + (b
.

group) + (c
.

gender) + (d
.

group
.

gender)

y = gene’s expression

a, b, c and d = parameters estimated from the data

a = intercept (expression when factors are at ”reference” level)

b and c = main effects

d = interaction effect



Taking multiple factors into account

1 factor: treatment

Control Treatment

2 5

9 7

1 3

7 5

8 4

3 6

5 5Mean

Control Treatment

Males

2 6

3 7

1 5

Mean 2 6

8 4

Females 9 5

7 3

Mean 8 4

2 factors: treatment and gender



Linear modeling: Interaction effect

mean

control treatment

males

females

2

4

6

8

10



Linear modeling tool in Chipster
➢ Linear modeling tool in Chipster can take into account

• 3 main effects

• Their interactions

• Pairing

• Technical replication (one sample is hybridized to several arrays)

➢ Main effects can be treated as 

• Linear = is there a trend towards higher numbers?

• Factor = are there differences between the groups?

If the main effect has only two levels (e.g. gender), selecting linear or factor

gives the same result

➢ Note that the result table contains all the genes, so in order to get the

differentially expressed genes you have to filter it

• Use the tool Utilities / Filter using a column value

• Select the column p.adjusted that corresponds to the comparison of your

interest



Exercise 10: Linear modeling

➢ Perform linear modeling so that the analysis takes into account
group and gender.

• Select normalized.tsv and Statistics / Linear modelling

• Set Main effect 2 = gender and treat both main effects as factors.

• Open limma.tsv and inspect the result columns.

➢ Retrieve differentially expressed genes for the group comparison

• Select limma.tsv and the tool Utilities / Filter using a column
value. Keep genes whose adjusted p-value < 0.05:

• Column = p.adjusted.main12 

• Cut-off = 0.05

• Smaller or larger = smaller-than

➢ Perform linear modeling so that the analysis takes into account
group, gender and pairing. 

• As above but include pairing = patient.

• Open limma.tsv and inspect the result columns.

• Retrieve differentially expressed genes as before.



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Multiple testing correction

➢ Problem: When thousands of genes are tested for differential

expression, a gene can get a good p-value just by chance.

1 gene, a = 0.05

 false positive incidence = 1 / 20

30 000 genes, a = 0.05

 false positive incidence = 1500

➢ Solution: Correct the p-values for multiple testing. Methods:

• Bonferroni

• Holm (step down)

• Westfall & Young

• Benjamini & Hochberg

more false negatives

more false positives



Benjamini & Hochberg method (BH) 

➢ How does it work?

• rank p-values from largest to smallest

• largest p-value remains unaltered

• second largest p-value = p * n / (n-1)

• third largest p-value = p * n / (n-2)

• …

• smallest p-value = p * n / (n-n+1) = p * n

➢ Some adjusted p-values can become identical

• Adjusting should not change the order of p-values, so if

pai+1> pai then pai+1 = pai

➢ We can reduce the severity of multiple testing correction by

reducing the number of genes tested (n) 

• use independent filtering

➢ The adjusted p-value is FDR (false discovery rate)

• Tells what proportion of results can be false positives

raw p

n

1

correction



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Annotation

➢ Gene annotation = information about biological function, pathway 

involvement, chromosal location etc

➢ Annotation information is collected from different biological 

databases  to a single database by the Bioconductor project

• Bioconductor provides annotation packages for many microarrays

➢ Annotation package is required by many analysis tools

• Annotation, GO/KEGG enrichment, promoter analysis, chromosomal 

plots

• These tools don’t work for those chiptypes which don’t have 

Bioconductor annotation packages





Alternative CDF environments for Affymetrix

➢ CDF is a file that links individual probes to gene transcripts

➢ Affymetrix default annotation uses older CDF files which may 

map many probes to wrong genes

➢ Alternative CDFs fix this problem 

➢ In Chipster selecting ”custom chiptype” in Affymetrix 

normalization takes altCDFs to use

➢ For more information see

• Dai et al, (2005) Nuc Acids Res, 33(20):e175: Evolving 

gene/transcript definitions significantly alter the interpretation of 

GeneChip data

• http://brainarray.mbni.med.umich.edu/Brainarray/Database/Cust

omCDF/genomic_curated_CDF.asp



Exercise 11: Annotation

➢ Annotate genes 

• Select the file two-sample.tsv

• Run Annotation /  Agilent, Affymetrix or Illumina gene list so

that you include the FC and p-value information to the result file

• Run Annotation /  Add annotations to data



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Pathway analysis – why?

➢ Statistical tests can yield thousands of differentially expressed 

genes

➢ It is difficult to make ”biological” sense out of the result list

➢ Looking at the bigger picture can be helpful, e.g. which pathways 

are differentially expressed between the experimental groups

➢ Databases such as KEGG, GO, Reactome and ConsensusPathDB 

provide grouping of genes to pathways, biological processes, 

molecular functions, etc

➢ Two approaches to pathway analysis

• Gene set enrichment analysis

• Gene set test



Approach I: Gene set enrichment analysis

Apoptosis (200 genes)

Our list (50 genes)

Genome (30,000 genes)

Our list and apoptosis (10 genes)

H0 :                  = 30 >> 1
50
10____

_______

30000
200____

1. Perform a statistical test to find differentially expressed genes

2. Check if the list of differentially expressed genes is ”enriched” 

for some pathways



Approach II: Gene set test

1. Do NOT perform

differential gene

expression analysis

2. Group genes to pathways

and perform differential

expression analysis for 

the whole pathway

➢ Advantages

• More sensitive than single 

gene tests

• Reduced number of tests

→ less multiple testing

correction

→ increased power



ConsensusPathDB

➢ One-stop shop: Integrates pathway information from 32 

databases covering 

• biochemical pathways

• protein-protein, genetic, metabolic, signaling, gene regulatory 

and drug-target interactions

➢ Developed by Ralf Herwig’s group at the Max-Planck Institute 

in Berlin

➢ ConsensusPathDB over-representation analysis tool is 

integrated in Chipster

• runs on the MPI server in Berlin



GO (Gene Ontology)

➢ Controlled vocabulary of terms for describing gene product 

characteristics

➢ 3 ontologies

• Biological process

• Molecular function

• Cellular component

➢ Hierarchical structure



KEGG

➢ Kyoto Encyclopedia for Genes and Genomes

➢ Collection of pathway maps representing molecular interaction 

and reaction networks for 

• metabolism

• cellular processes

• diseases, etc



Exercise 12: Gene set enrichment analysis

➢ Identify over-represented GO terms

• Select the two-sample.tsv file and run Pathways / Hypergeometric 

test for GO. Open hypergeo.html and read about the first term. Check

in hypergeo.tsv how many terms do you get.

➢ Extract genes for a specific GO term

• Copy the GO identifier for the top term (GO:0006082).

• Select  two-sample.tsv and run tool Utilities / Extract genes for GO 

term, pasting the GO identifier in the parameter field.

• Open extracted-from-GO.tsv. How many genes do you get? Are they

up- or down-regulated (use also Volcano plot and Expression profile)?

➢ Identify over-represented ConsensusPathDB pathways 

• Select  two-sample.tsv and run Pathways / Hypergeometric test for

ConsensusPathDB. 

• Click on the links in the cpdb.html file to read about the pathways.



Exercise 13: Gene set test

➢ Identify differentially expressed KEGG pathways

• Select the normalized.tsv file and Pathways / Gene set test. Set the

Number of pathways to visualize = 4

• Explore global-test-result-table.tsv. How many differentially expressed

KEGG pathways do you get? 

• Explore multtest.pdf. Which gene contributes most to the first pathway?



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Clustering in Chipster

➢ Hierarchical

• Includes reliability checking of the resulting tree with bootstrapping

➢ K-means

• Additional tool to estimate K

➢ Quality threshold

➢ Self-organizing maps

➢ K-nearest neighbor (KNN)

• Classification aka class prediction



Hierarchical clustering

➢ Provides stable clusters

➢ Assumes pairwise correlations 

➢ Early mistakes cannot be corrected

➢ Computationally intensive

➢ Drawing methods

• Single / average / complete linkage

➢ Distance methods

• Euclidean distance

• Pearson / Spearman correlation



Pearson correlationEuclidean distance

Hierarchical clustering: distance methods

One can either calculate the distance between two pairs of data 

sets (e.g. samples) or the similarity between them



Distance methods can yield very different results



Correlations are sensitive to outliers (use Spearman)!



Hierarchical clustering: drawing methods

single linkage average linkage complete linkage



Hierarchical clustering (euclidean distance)

calculate 

distance 

matrix

gene 1 gene 2 gene 3 gene 4

gene 1 0
gene 2 2 0
gene 3 8 7 0
gene 4 10 12 4 0

calculate averages of 

most similar

calculate averages of 

most similar

gene 1,2 gene 3 gene 4

gene 1,2 0
gene 3 7.5 0
gene 4 11 4 0

gene 1,2 gene 3,4

gene 1,2 0
gene 3,4 9.25 0



calculate 

distance 

matrix

gene 1 gene 2 gene 3 gene 4

gene 1 0
gene 2 2 0
gene 3 8 7 0
gene 4 10 12 4 0

gene 1,2 gene 3 gene 4

gene 1,2 0
gene 3 7.5 0
gene 4 11 4 0

gene 1,2 gene 3,4

gene 1,2 0
gene 3,4 9.25 0

1 2 3 4

calculate averages of 

most similar

calculate averages of 

most similar

Dendrogram

Hierarchical clustering (avg. linkage)



1 2 3 4 5 123 4 5

123 451 23 45

When assessing similarity, look at the branching pattern instead of 

sample order



Assessing the certainty of the branching pattern by 

bootstrapping 

• You can get this plot by setting the 

parameter Resample = bootstrap. 

Increasing the number of resamplings 

increases the accuracy but makes the 

analysis slower. You can start with 100.

• AU = approximately unbiased p-value, 

computed by multiscale bootstrap 

resampling. Clusters with AU larger 

than 95% are strongly supported by 

data.

• BP = bootstrap probability p-value, 

computed by normal bootstrap 

resampling

• Developers recommend to use the AU 

values



K-means clustering



Exercise 14: Hierarchical clustering

➢ Cluster genes

• Select the column-value-filter.tsv and run Clustering / 

Hierarchical. 

• View the resulting file hc.tre as Hierarchical clustering. 

➢ Cluster genes and samples

• Select the column-value-filter.tsv and run the tool

Visualization / Heatmap.

• Select the column-value-filter.tsv and run the tool

Visualization / Annotated heatmap, using parameters

• Coloring scheme = Blue - white – red

• Cluster samples only = no



Microarray data analysis workflow

➢ Importing data to Chipster

➢ Normalization

➢ Describing samples with a phenodata file

➢ Quality control

• Array level 

• Experiment level 

➢ Filtering (optional)

➢ Statistical testing

• Parametric and non-parametric tests

• Linear modeling

• Multiple testing correction

➢ Annotation

➢ Pathway analysis

➢ Clustering

➢ Saving the workflow



Saving and using workflows

➢ Select the starting point for your 

workflow

➢ Select ”Workflow/ Save starting 

from selected”

➢ Save the workflow file on your 

computer with a meaningful name 

• Don’t change the ending (.bsh)

➢ To run a workflow on another 

dataset, select

• Workflow → Open and run

• Workflow → Run recent (if you 

saved the workflow recently). 



Exercise 15: Saving a workflow

➢ Prune your workflow if necessary by removing 

• cyclic structures

• files produced by visual selection (gray boxes)

➢ Save the workflow

• Select normalized.tsv and click on Workflow / Save starting 

from selected. Give your workflow a meaningful name and 

save it.



Microarray data analysis summary

➢ Normalization 

• RMA for Affy

➢ Quality control at array level: are there outlier arrays?

• RLE, NUSE

➢ Quality control at experiment level: do the sample groups 

separate? Are there batch effects or outliers?

• PCA, NMDS, dendrogram

➢ (Independent filtering of genes)

• e.g. 50% based on coefficient of variation

• Depends on the statistical test to be used later

➢ Statistical testing

• Empirical Bayes method (two group test / linear modeling)

➢ Annotation, pathway analysis, promoter analysis,  clustering, 

classification…



Introduction to RNA-seq



What can I investigate with RNA-seq?

➢ Differential expression

➢ Isoform switching

➢ New genes and isoforms

➢ New transcripts and transcriptomes

➢ Variants

➢ Allele-specific expression

➢ Etc etc



How was your data produced?

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html

PolyA purification

cDNA generation

& fragmentation 

Library construction

Size selection



Stranded RNA-seq data

➢ Tells if a read maps to same strand where the parental gene is, or 

to the opposite strand

• Useful information when a read maps to a genomic location where 

there is a gene on both strands

➢ Several lab methods, you need to know which one was used

• TruSeq stranded, NEB Ultra Directional, Agilent SureSelect

Strand-Specific…

read

read

Unstranded data: 

Does the read come 

from geneA or 

geneB?

Stranded data

→ the read comes 

from geneA



RNA-seq data analysis



RNA-seq data analysis: typical steps

Gene A

Align reads to 

reference genome

Match alignment positions 

with known gene positions

Count how many reads 

each gene has

Gene B

A = 6 B = 11

Compare sample groups: 

differential expression

analysis

Raw data (reads)
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Gene A 6 5 7 170 100 110

Gene B 11 11 10 3 4 2

Gene C 200 150 355 50 1 3

Gene D 0 1 0 2 0 1



RNA-seq data analysis: steps, tools and files

gene A gene B

Alignment
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Gene A 6 5 7 170 100 110

Gene B 11 11 10 3 4 2

Gene C 200 150 355 50 1 3

Gene D 0 1 0 2 0 1

BAM

Quantitation

Differential 

expression 

analysis

Gene lists 

(TSV)

Pre-

processing

Quality control

Quality control

Quality control

FastQC

Trimmo-

matic

HISAT2

RSeQC

HTSeq

PCA, 

clustering

DESeq2,

edgeR

STEP         TOOL       FILE

Read count 

table (TSV)

FASTQFASTQFASTQ

BAMBAM

Read count  

file (TSV)
Read count  

file (TSV)
Read count  

file (TSV)

Combine 

count files to 

table

Define NGS 

experiment

FASTQFASTQFASTQ



RNA-seq data analysis workflow



The steps we practise during the course



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing if needed

➢ Alignment (=mapping) to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Visualization of reads and results in genomic context



What and why?

➢ Potential problems

• low confidence bases, Ns

• sequence specific bias, GC bias

• adapters 

• sequence contamination

• …

Knowing about potential problems in your data allows you to

➢ correct for them before you spend a lot of time on analysis

➢ take them into account when interpreting results



Raw reads: FASTQ file format

➢ Four lines per read:

@read name

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 

+ read name

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

➢ http://en.wikipedia.org/wiki/FASTQ_format

➢ Attention: Do not unzip FASTQ files

• Chipster’s analysis tools can cope with zipped files (.gz)



Base qualities

➢ If the quality of a base is 20, the probability that it is wrong is 0.01.

• Phred quality score Q = -10 * log10 (probability that the base is wrong)

T  C  A  G  T  A  C  T  C  G

40 40 40 40 40 40 40 40 37 35

➢ ”Sanger” encoding: numbers are shown as ASCII characters so that 

33 is added to the Phred score

• E.g. 39 is encoded as ”H”, the 72nd ASCII character (39+33 = 72)  

• Note that older Illumina data uses different encoding

• Illumina1.3: add 64 to Phred

• Illumina 1.5-1.7: add 64 to Phred, ASCII 66 ”B” means that the whole read segment 

has low quality



Base quality encoding systems

http://en.wikipedia.org/wiki/FASTQ_format



Per position base quality (FastQC)

good

ok

bad



Per position base quality (FastQC)



Per position sequence content (FastQC)



➢ Enrichment of k-mers at the 5’ end due to use of random 

hexamers or transposases in the library preparation

➢ Typical for RNA-seq data

➢ Can’t be corrected, doesn’t usually effect the analysis

Per position sequence content (FastQC)



I have many FASTQ files – how can I quickly 

check them all?

➢ Make a tar package of all the FASTQ files using the tool Utilities 

/ Make a tar package

➢ Select the tar package and run the tool Quality control / Read 

quality with MultiQC for many FASTQ files

1

4

8



Was your data made with stranded protocol?

➢ You need to indicate it when

• aligning reads to genome (e.g. HISAT2)

• counting reads per genes (e.g. HTSeq)

➢ If you don’t know if a stranded sequencing protocol was used, 

you can check it 

• Select your FASTQ file and run the tool Quality control / RNA-

seq strandedness inference and inner distance estimation using 

RseQC

• aligns a subset of the reads to genome and compares the 

locations to reference annotation

➢ For more info please see the manual

• http://chipster.csc.fi/manual/library-type-summary.html



RseQC strandedness report 



What does this ++, - - mean?

Single end:

++,--

read mapped to ‘+’ strand indicates parental gene on ‘+’ strand

read mapped to ‘-‘ strand indicates parental gene on ‘-‘ strand

+-,-+

read mapped to ‘+’ strand indicates parental gene on ‘-‘ strand

read mapped to ‘-‘ strand indicates parental gene on ‘+’ strand

Paired end:

1++,1–,2+-,2-+

read1 mapped to ‘+’ strand indicates parental gene on ‘+’ strand

read1 mapped to ‘-‘ strand indicates parental gene on ‘-‘ strand

read2 mapped to ‘+’ strand indicates parental gene on ‘-‘ strand

read2 mapped to ‘-‘ strand indicates parental gene on ‘+’ strand

1+-,1-+,2++,2--

read1 mapped to ‘+’ strand indicates parental gene on ‘-‘ strand

read1 mapped to ‘-‘ strand indicates parental gene on ‘+’ strand

read2 mapped to ‘+’ strand indicates parental gene on ‘+’ strand

read2 mapped to ‘-‘ strand indicates parental gene on ‘-‘ strand

gene

read

gene

read

+

-

+

-



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Manipulation of alignment files

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Visualization of reads and results in genomic context

➢ Differential expression analysis



Filtering and trimming

➢ Filtering removes the entire read, trimming removes only the bad 

quality bases

• It can remove the entire read, if all bases are bad 

➢ Trimming makes reads shorter

• This might not be optimal for some applications

➢ Base quality threshold for trimming is a trade-off between having 

good quality reads and having enough sequence

➢ Paired end data: the matching order of the reads in the two files 

has to be preserved

• If a read is removed, its pair has to removed as well



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Manipulation of alignment files

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Visualization of reads and results in genomic context

➢ Differential expression analysis



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Visualization of reads and results in genomic context

➢ Differential expression analysis



Aligning reads to reference genome

➢ The goal is to find the location where a read originated from

➢ Challenges

• Reads contain genomic variants and sequencing errors

• Genomes contain non-unique sequence and introns

➢ RNA-seq aligner needs to be able to map splice junction spanning

reads to genome non-contiguously 

• Spliced alignments are difficult because sequence signals at splice 

sites are limited, and introns can be thousands of bases long

Modified from Kim et al (2015) Nature methods 12:358



Alignment programs

➢ Many aligners have been developed over the years

• Convert genome fasta file to a data structure which faster to 

search (e.g. BWT index or suffix array) 

• Differ in speed, memory requirements, accuracy and ability to deal 

with spliced alignments

➢ Use splice-aware aligner for mapping RNA-seq reads

• Examples: 

• STAR (fast and accurate, needs a lot of memory)

• HISAT2 (fast and accurate, creating the genomic index needs a LOT of 

memory)

• TopHat2 (slower, needs less memory)

157



Splice-aware aligners in Chipster

➢ STAR

• Human genome available

➢ HISAT2

• Human and mouse genome available

• You can also supply own genome if it is small

➢ TopHat2

• Many genomes available

• You can also supply own genome

➢ Output files

• BAM = contains the alignments 

• bai = index file for BAM, required by genome browsers etc

• log = useful information about the alignment run158



HISAT2

➢ HISAT = Hierarchical Indexing for Spliced Alignment of Transcripts

➢ Fast spliced aligner with low memory requirement

➢ Reference genome is (BWT FM) indexed for fast searching

• Currently Chipster offers human and mouse reference genome

• Let us know if you need others!

• You can provide own (small) reference genome in fasta format

➢ Uses two types of indexes

• A global index: used to anchor a read in genome (28 bp is enough)

• Thousands of small local indexes, each covering a genomic region 

of 56 Kbp: used for rapid extension of alignments (good for spliced 

reads with short anchors)

➢ Uses splice site information found during the alignment of earlier 

reads in the same run

159



HISAT2 parameters
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➢ Remember to set the strandedness (library type) correctly!

➢ Note that there can be alignments that are better than the 5 reported ones

➢ Require long anchors (> 16 bp) if you are going to do transcript assembly

➢ Soft-clipping = read ends don’t need to align to the genome, if this 

maximizes the alignment score



STAR

➢ STAR = Spliced Transcripts Alignment to a Reference

➢ Reference genome fasta is converted to a suffix array for fast 

searching

➢ 2-pass mapping process

• splice junctions found during the 1st pass are inserted into the 

genome index, and all reads are re-mapped in the 2nd mapping pass

• this doesn't increase the number of detected novel junctions, but it 

allows more spliced reads mapping to novel junctions.

➢ Maximum alignments per read -parameter sets the maximum 

number of loci the read is allowed to map to

• Alignments (all of them) will be output only if the read maps to no 

more loci than this. Otherwise no alignments will be output.

➢ Chipster offers an Ensembl GTF file to detect annotated splice 

junctions

• you can also give your own, e.g. GENCODE GTF



What if my sample has several FASTQ files?
➢ Align all of them together

➢ Single end data: Select all the FASTQ files for the sample

➢ Paired end data: Make filename list files first
• Select all the read1 files and run the tool ”Utilities / Make a list of file names” 

• Repeat with all the read2 files

• Select all the FASTQ files and both filename list files and run HISAT2/STAR 

(check that the files have been assigned correctly)



File format for mapped reads: BAM/SAM

➢ BAM is a compact binary file containing 

aligned reads. You can look at it with BAM 

viewer.

➢ SAM (Sequence Alignment/Map) contains 

the same information in tab-delimited text. 

BAM header

alignment information: one line per read alignment, 

containing 11 mandatory fields, followed by optional tags



Fields in BAM/SAM files

➢ read name HWI-EAS229_1:2:40:1280:283

➢ flag 272

➢ reference name 1

➢ position 18506

➢ mapping quality 0

➢ CIGAR 49M6183N26M

➢ mate name *

➢ mate position 0

➢ insert size 0

➢ sequence 

AGGGCCGATCTTGGTGCCATCCAGGGGGCCTCTACAAGGAT

AATCTGACCTGCTGAAGATGTCTCCAGAGACCTT

➢ base qualities 

ECC@EEF@EB:EECFEECCCBEEEE;>5;2FBB@FBFEEFCF@F

FFFCEFFFFEE>FFEFC=@A;@>1@6.+5/5

➢ tags MD:Z:75  NH:i:7 AS:i:-8 XS:A:-



➢ Really nice pages for SAM/BAM interpretation: 

http://www.samformat.info



Mapping quality

➢ Confidence in read’s point of origin

➢ Depends on many things, including 

• uniqueness of the aligned region in the genome

• length of alignment

• number of mismatches and gaps

➢ Expressed in Phred scores, like base qualities 

• Q = -10 * log10 (probability that mapping location is wrong)

➢ Values differ in different aligners. E. g. unique mapping is

• 60 in HISAT2

• 255 in STAR

• 50 in TopHat

• https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-

but-their-implementation-is-a-mess/



CIGAR string

➢ M = match or mismatch

➢ I = insertion

➢ D = deletion

➢ N = intron (in RNA-seq read alignments)

➢ S = soft clip (ignore these bases)

➢ H = hard clip (ignore and remove these bases)

➢ Example: 

@HD VN:1.3 SO:coordinate

@SQ SN:ref LN:45

r001  163  ref  7  30  8M2I4M1D3M   =   37   39   TTAGATAAAGGATACTG   *

• The corresponding alignment
Ref  AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

r001       TTAGATAAAGGATA*CTG



Flag field in BAM

➢ Read’s flag number is a sum of values

• E.g. 4 = unmapped, 1024 = duplicate

• Explained in detail at http://samtools.github.io/hts-specs/SAMv1.pdf

• You can interpret them at 

http://broadinstitute.github.io/picard/explain-flags.html



How did the alignment go? Check the log file

➢ How many reads mapped to the reference? 

• How many of them mapped uniquely? 

➢ How many pairs mapped? 

• How many pairs mapped concordantly?

➢ What was the overall alignment rate?



Log file by STAR



Other tools for checking BAM files

➢ Count alignments in BAM

• How many alignments does the BAM contain. 

• Includes an optional mapping quality filter.

➢ Count alignments per chromosome in BAM

➢ Count alignment statistics for BAM

➢ Collect multiple metrics for BAM



Tools for manipulating BAM files

➢ Make a subset of BAM

• Retrieve alignments for a given chromosome/region, e.g. chr1:100-

1000

• Can filter based on mapping quality

➢ Index BAM

➢ Convert SAM to BAM, sort and index BAM

• ”Preprocessing” when importing SAM/BAM, runs on your computer. 

• The tool available in the ”Utilities” category runs on the server



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Visualization of reads and results in genomic context



Annotation-based quality metrics

➢ Saturation of sequencing depth

• Would more sequencing detect more genes and splice junctions?

➢ Read distribution between different genomic features

• Exonic, intronic, intergenic regions

• Coding, 3’ and 5’ UTR exons

• Protein coding genes, pseudogenes, rRNA, miRNA, etc

➢ Is read coverage uniform along transcripts?

• Biases introduced in library construction and sequencing

• polyA capture and polyT priming can cause 3’ bias

• random primers can cause sequence-specific bias

• GC-rich and GC-poor regions can be under-sampled

• Genomic regions have different mappabilities (uniqueness)



➢ Checks coverage uniformity, saturation of sequencing depth, 

novelty of splice junctions, read distribution between different 

genomic regions, etc.

➢ Takes a BAM file and a BED file

• Chipster has BED files available for several organisms

• You can also use your own BED if you prefer

Quality assessment with RseQC



BED file format

➢ BED (Browser extensible data) file format is used for reporting 

location of features (e.g. genes and exons) in a genome

➢ 5 obligatory columns: chr, start, end, name, score

➢ 0-based, like BAM



➢ RseQC needs the same chromosome naming in BAM and BED

➢ Chromosome names in BED files can have the prefix “chr”

• e.g. chr1

➢ Chipster BAM files are Ensembl-based and don’t have the prefix

• If you use your own BED (e.g. from UCSC Table browser) you need 

to remove the prefix (chr1 → 1) 

➢ Use the tool Utilities / Modify text with the following parameters:

• Operation = Replace text

• Search string = chr

• Input file format = BED

Own BED? Check chromosome names



QC tables by RseQC
(alignment, actually…)

Default=30

Read A

Reference

Read A Read A

Total records:          7

Non primary hits:    4

Total reads:               3

Total tags: 8

Read B Read B

Read CRead A



Splicing graphs by RseQC

➢ Splicing junction = exon-exon junction covered by one or more reads

➢ Splicing event = a read is split across a splice junction



➢ The majority of RNA in cells is rRNA

➢ Typically we want to sequence protein coding genes, so we try to 

avoid rRNA

• polyA capture

• Ribominus kit (may not work consistently between samples)

➢ How to check if we managed to avoid rRNA?

• RseQC might not be able to tell, if the rRNA genes are not in the 

BED file (e.g. in human the rRNA gene repeating unit has not been 

assigned to any chromosome yet)

• You can map the reads to human ribosomal DNA repeating unit 

sequence (instead of the genome) with the Bowtie aligner, and 

check the alignment percentage

Did I accidentally sequence ribosomal RNA? 



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Visualization of reads and results in genomic context



Software for counting reads per genes or 

transcripts

➢ HTSeq

➢ Cufflinks

➢ StringTie

➢ Kallisto

➢ Salmon



Counting reads per genes with HTSeq

➢ Given a BAM file and a list of gene locations, counts how many 

reads map to each gene.

• A gene is considered as the union of all its exons. 

• Reads can be counted also per exons. 

➢ Locations need to be supplied in GTF file

• Note that GTF and BAM must use the same chromosome naming

➢ Multimapping reads and ambiguous reads are not counted

➢ 3 modes to handle reads which overlap several genes

• Union (default), Intersection-strict, Intersection-nonempty

➢ Attention: was your data made with stranded protocol?

• You need to select the right counting mode!



Stranded / directional RNA-seq data

➢ Several protocols available 

• TruSeq stranded, NEB Ultra Directional, Agilent SureSelect

Strand-Specific…

➢ Make sure that you set the strandedness parameter correctly

HISAT2 / Cuffdiff HTSeq

--stranded reverse

--stranded yes

--stranded no



Not unique or ambiguous?

Ambiguous

Stranded data

→ Not ambiguous

Multimapping

(not unique)

read A read A

read

read



HTSeq count modes



GTF file format

➢ 9 obligatory columns: chr, source, name, start, end, score, strand, 

frame, attribute

➢ 1-based

➢ For HTSeq to work, all exons of a gene must have the same gene_id

• Use GTFs from Ensembl, avoid UCSC



Estimating gene expression at gene level
- the isoform switching problem

Trapnell et al. Nature Biotechnology 2013



Combine individual count files into a count table

➢ Select all the count files and run “Utilities / Define NGS experiment”

➢ This creates a table of counts and a phenodata file, where you can 

describe experimental groups

Read table 

(TSV, table)
phenodata

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)

Read 

counts 

(TSV, table)
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Gene A 6

Gene B 11

Gene C 200

Gene D 0
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Gene A 6 5 7 17 10 11

Gene B 11 11 10 3 4 2

Gene C 200 150 355 50 1 3

Gene D 0 1 0 2 0 1



Phenodata file: describe the experiment

➢ Describe experimental groups, time, pairing etc with numbers

• e.g. 1 = control, 2 = cancer

➢ Define sample names for visualizations in the Description column



What if somebody gives you a count table?

➢ Make sure that the filename ending is tsv

➢ When importing the file to Chipster select “Use Import tool” 

➢ In Import tool

• Mark the title row

• Mark the identifier column and the count columns 

➢ Select the imported files and run the tool “Utilities / 

Preprocess count table“

• This creates a count table and a phenodata file for it



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Visualization of reads and results in genomic context



Experiment level quality control

➢ Getting an overview of similarities and dissimilarities 

between samples allows you to check

• Do the experimental groups separate from each other?

• Is there a confounding factor (e.g. batch effect) that should be 

taken into account in the statistical analysis?

• Are there sample outliers that should be removed?

➢ Several methods available

• MDS (multidimensional scaling)

• PCA (principal component analysis)

• Clustering



PCA plot by DESeq2

➢ The first two principal

components, calculated

after variance stabilizing

transformation

➢ Indicates the proportion 

of variance explained by

each component

• If PC2 explains only a 

small percentage of  

variance, it can be 

ignored



MDS plot by edgeR

➢ Distances correspond to the logFC or biological coefficient of 

variation (BCV) between each pair of samples

➢ Calculated using 500 most 

heterogenous genes (= have 

largest dispersion when treating 

all samples as one group)



Sample heatmap by DESeq2

➢ Euclidean distances between the samples, calculated after

variance stabilizing transformation



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Manipulation of alignment files

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Visualization of reads and results in genomic context



Differential gene expression analysis

➢ Normalization

➢ Dispersion estimation

➢ Log fold change estimation

➢ Statistical testing

➢ Filtering

➢ Multiple testing correction



Differential expression analysis:

Normalization



Normalization

➢ For comparing gene expression between (groups of) samples, 

normalize for

• Library size (number of reads obtained)

• RNA composition effect

➢ The number of reads for a gene is also affected by transcript 

length and GC content

• When studying differential expression you assume that they stay 

the same



Normalization by edgeR and DESeq

➢ Aim to make normalized counts for non-differentially 

expressed genes similar between samples

• Do not aim to adjust count distributions between samples

➢ Assume that

• Most genes are not differentially expressed

• Differentially expressed genes are divided equally between 

up- and down-regulation

➢ Do not transform data, but use normalization factors within 

statistical testing



Normalization by edgeR and DESeq – how?

➢ DESeq(2)

• Take geometric mean of gene’s counts across all samples

• Divide gene’s counts in a sample by the geometric mean

• Take median of these ratios → sample’s normalization factor 

(applied to read counts)

➢ edgeR

• Select as reference the sample whose upper quartile is closest to 

the mean upper quartile

• Log ratio of gene’s counts in sample vs reference → M value

• Take weighted trimmed mean of M-values (TMM) → normalization 

factor (applied to library sizes)
• Trim: Exclude genes with high counts or large differences in expression

• Weights are from the delta method on binomial data



Do not use RPKM/FPKM for differential 

expression analysis with edgeR and DESeq2!

➢ Reads (or fragments) per kilobase per million mapped reads.

➢ Normalizes for gene length and library size: 

• 20 kb transcript has 400 counts, library size is 20 million reads 

→ RPKM = (400/20) / 20 = 1

• 0.5 kb transcript has 10 counts, library size is 20 million reads 

→ RPKM = (10/0.5) / 20 = 1

➢ RPKM/FPKM can be used only for reporting expression values, not 

for testing differential expression

• In DE analysis raw counts are needed to assess the measurement 

precision correctly



Differential expression analysis:

Dispersion estimation



Dispersion

➢ When comparing  gene’s expression levels between groups, it 

is important to know also its within-group variability

➢ Dispersion = (BCV)2

• BCV = gene’s biological coefficient of variation

• E.g. if gene’s expression typically differs from replicate to 

replicate by 20% (so BCV = 0.2), then this gene’s dispersion is 

0.22 = 0.04

➢ Note that the variability seen in counts is a sum of 2 things:

• Sample-to-sample variation (dispersion)

• Uncertainty in measuring expression by counting reads



How to estimate dispersion reliably?

➢ RNA-seq experiments typically have only few replicates

→ it is difficult to estimate within-group variability

➢ Solution: pool information across genes which are expressed 

at similar level

• assumes that genes of similar average expression strength have 

similar dispersion

➢ Different approaches

• edgeR

• DESeq2



Dispersion estimation by DESeq2

➢ Estimates genewise dispersions using maximum likelihood

➢ Fits a curve to capture the dependence of these estimates on 

the average expression strength

➢ Shrinks genewise values towards the curve using an empirical 

Bayes approach 

• The amount of shrinkage

depends on several things

including sample size

• Genes with high gene-wise

dispersion estimates are

dispersion outliers (blue

circles above the cloud) and 

they are not shrunk



Differential expression analysis:

Statistical testing



Generalized linear models

➢ Model the expression of each gene as a linear combination of 

explanatory factors (eg. group, time, patient)

• y = a + (b
.

group) + (c
.

time) + (d
.

patient) + e

y = gene’s expression

a, b, c and d = parameters estimated from the data

a = intercept (expression when factors are at reference level)

e = error term

➢ Generalized linear model (GLM) allows the expression value 

distribution to be different from normal distribution

• Negative binomial distribution used for count data



Statistical testing

➢ edgeR

• Two group comparisons

• Exact test for negative binomial distribution.

• Multifactor experiments

• Generalized linear model, likelyhood ratio test. 

➢ DESeq2

• Shrinks log fold change estimates toward zero using an 

empirical Bayes method

• Shrinkage is stronger when counts are low, dispersion is high, or there 

are only a few samples

• Generalized linear model, Wald test for significance

• Shrunken estimate of log fold change is divided by its standard error and 

the resulting z statistic is compared to a standard normal distribution



Fold change shrinkage by DESeq2



Multiple testing correction

➢ We tests thousands of genes, so it is possible that some 

genes get good p-values just by chance

➢ To control this problem of false positives, p-values need to be 

corrected for multiple testing

➢ Several methods are available, the most popular one is the 

Benjamini-Hochberg correction (BH)

• largest p-value is not corrected

• second largest p = (p *n)/ (n-1)

• third largest p = (p * n)/(n-2)

• …

• smallest p = (p * n)/(n- n+1) = p * n

➢ The adjusted p-value is FDR (false discovery rate)



Filtering

➢ Reduces the severity of multiple testing correction by 

removing some genes (makes n smaller)

➢ Filter out genes which have little chance of showing 

evidence for significant differential expression

• genes which are not expressed

• genes which are expressed at very low level (low counts are 

unreliable)

➢ Should be independent 

• do not use information on what group the sample belongs to

➢ DESeq2 selects filtering threshold automatically



edgeR result table

➢ logFC = log2 fold change

➢ logCPM = average log2 counts per million

➢ Pvalue = raw p-value

➢ FDR = false discovery rate (Benjamini-Hochberg adjusted p-

value)



DESeq2 result table

➢ baseMean = mean of counts (divided by size factors) taken 

over all samples

➢ log2FoldChange = log2 of the ratio meanB/meanA

➢ lfcSE = standard error of log2 fold change

➢ stat = Wald statistic

➢ pvalue = raw p-value

➢ padj = Benjamini-Hochberg adjusted p-value



Statistical testing for differential expression:

things to take into account

➢ Biological replicates are important!

➢ Normalization is required in order to compare expression 

between samples

• Different library sizes

• RNA composition bias caused by sampling approach

➢ Raw counts are needed to assess measurement precision

• Counts are the ”the units of evidence” for expression

• No FPKMs thanks!

➢ Multiple testing problem



Summary of differential expression analysis 

steps and files

➢ Quality control / Read quality with FastQC → html report

➢ (Preprocessing / Trim reads with Trimmomatic → FASTQ)

➢ (Utilities / Make a list of file names → txt)

➢ Alignment / HISAT2 for paired end reads → BAM

➢ Quality control / RNA-seq quality metrics with RseQC → pdf

➢ RNA-seq / Count aligned reads per genes with HTSeq → tsv

➢ Utilities / Define NGS experiment → tsv

➢ Quality control / PCA and heatmap of samples with DESeq2 → pdf

➢ RNA-seq / Differential expression using DESeq2 → tsv

➢ Utilities / Annotate Ensembl identifiers → tsv



RNA-seq data analysis workflow

➢ Quality control of raw reads

➢ Preprocessing (trimming / filtering) if needed

➢ Alignment (=mapping) to reference genome

➢ Alignment level quality control

➢ Quantitation

➢ Experiment level quality control

➢ Differential expression analysis

➢ Visualization of reads and results in genomic context



Chipster Genome Browser

➢ Integrated with Chipster analysis environment

➢ Automatic sorting and indexing of BAM, BED and GTF files

➢ Automatic coverage calculation (total and strand-specific)

➢ Zoom in to nucleotide level

➢ Highlight variants

➢ Jump to locations using BED, GTF, VCF and tsv files

➢ View details of selected BED, GTF and VCF features

➢ Several  views (reads, coverage profile, density graph)






