Using the computing resources of CSC in NGS data analysis

csc

ChIP- and DNase-seq data analysis workshop - CSC

18.9 2014

KMDC - Kajaani modular datacenter

- CSC computing environment
 - Sisu supercomputer
 - Taito cluster
 - Hippu application server
 - Usage is free for researchers working in Finland (but you must register)
 - Possibility to work with terabyte level datasets
 - Plenty of scientific software available
 - Usage through linux command line

Software and databases at CSC

Software selection at CSC: • http://research.csc.fi/software

Science discipline specific pages:

- http://research.csc.fi/biosciences
- http://research.csc.fi/chemistry

Chipster data analysis environment: •http://chipster.csc.fi

Using Sisu and Taito

csc

сsс

Default user specific directories in Sisu and Taito Intended use Default Backup Storage time **Directory or storage** quota/user area Initialization scripts, source codes, Permanent Yes 20 GB **\$HOME** small data files. Not for running programs or research data. Users' own application software. Permanent Yes **\$USERAPPL** 20 GB **\$WRKDIR** Temporary data storage. 5 TB Until further No notice. **\$TMPDIR** Temporary users' files. 2 days No Common storage for project Permanent No project On members. A project can consist of request. one or more user accounts. Long term storage. Permanent Yes **HPC Archive*** 2 TB

Batch jobs in Taito

Queue	Number of cores	Maximum run time
serial	16 (one node)	3 days
parallel	448 (28 nodes)	3 days
hugemem	32 (one hugemem node)	7 days
longrun	16 (one node)	7 days
test	32 (two nodes)	30 min

Maximum of 896 simultaneous batch jobs

Parallel computing

- Embarrassingly parallel tasks:
 - Job can be split to numerous sub jobs
 - You can use array jobs and/or grid computing
- Threads/ OpenMP based parallelization
 - All the parallel processes must see the same memory -> all processes must run within one node -> can utilize max 16/32 cores
 - Applications rarely benefit from more than 4-8 cores
- MPI parallelization.
 - Shared memory -> can utilize several nodes
 - Check scaling before launching big jobs
 - In Sisu MPI based applications utilize often thousands of cores

HPC Archive and IDA

IDA

- Storage service for research data
- quotas are grated by the Universities and Academy of Finland
- several different interfaces
- accessible through normal network connections
- part of the "Avoin Tieteellinen Data" (www.tdata.fi)

HPC Archive

- Intended for CSC users
- 2TB / user
- Replaces the \$ARCHIVE
- · Only command line interface to the CSC servers

IDA storage service

csc

- iRODS based storage system for storing, archiving and sharing data
- The service was launched 2012
- · Usage through personal accounts and projects
- Each project has a shared directory too
- Speed: about 10 GB/min at the servers of CSC
- · CSC host's the service

Three interfaces:

- · WWW interface in Scientists' User Interface
- network directory interface for Linux, Mac (and Windows XP)
- command line tools (i-commands installed at the servers of CSC)

CSC

IDA interfaces at CSC

Some iRODS commands

iput *file* move file to IDA iget *file* retrieve file from IDA ils list the current IDA directory icd dir change the IDA directory irm *file* remove file from IDA imv file file move file inside IDA irsync synchronize the local copy with the copy in IDA imkdir create a directory to IDA Initialize your IDA account iinit

Home Services Contact sc1 SUI Services My Files My Files My Files Ida.csc/internal/ce/kkmattil/pairsdb_2011			
My Places	Filename	Size	Owne
▶ @ hippu	nrdb90.fasta	2.97 GB	kkma
▶ 🕎 louhi ▶ 🗊 murska	nrdb90_ne Q Open	1.23 GB	kkma
▶ ② vuori	nrdb90_ne 🔛 Edit	1.23 GB	kkma
▼ 💭 ida	nrdb90_ne 🙀 Download	831.59 MB	kkma
CSC	nrdb90_ok	1.73 GB	kkma
▼ 🚞 ce	pairsdb_90 📩 Unpack	6.92 MB	kkma
kkmattil	airsdb_90	9.02 GB	kkma
► Calkae	pairsdb_90	9.13 MB	kkma
ishared	pairsdb_90	9.37 GB	kkma
	pairsdb_90 🎤 Select All	9.61 MB	kkma
	airsdb_90 🔨 Clear Selection	5.55 GB	kkma
	pairsdb_90 🗙 Delete	8.62 MB	kkma
	🖉 Rename		
	Properties		

IDA In Scientist's User Interface

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

FGI • In grid computing you can use several computing clusters to run your jobs • Grids suit well for array job like tasks where you need to run a large amount of independent sub-jobs • You can also use FGI to bring cluster computing to your local desktop. • FGI: 12 computing clusters, about 10000 computing cores. • Software installations =Run Time Environments include several bioinformatics tools

Using Grid

The jobs are submitted using the ARC middleware (http://www.nordugrid.org/arc/)

- Using ARC resembles submitting batch jobs in Taito or Sisu
- ARC is installed in Hippu and Taito, but you can install it to your local machine too. Setup command in Hippu:

csc

```
module load nordugrid-arc
```

Basic ARC commands:

arcproxy	(Set up grid proxy certificate for 12 h)	
arcsub job.xrsl	(Submit job described in file job.xrsl)	
arcstat -a	(Show the status of all grid jobs)	
arcget job_id	(Retrieve the results of a finished grid job)	
arckill job_id	(kill the given grid job)	
arcclean -a	(remove job related data from the grid)	

```
Sample ARC job description file
                                                          csc
&
(executable=runbwa.sh)
(jobname=bwa_1)
 (stdout=std.out)
 (stderr=std.err)
 (gmlog=gridlog_1)
 (walltime=24h)
 (memory=8000)
 (disk=4000)
 (runtimeenvironment>="APPS/BI0/BWA_0.6.1")
 (inputfiles=
  "query.fastq" "query.fastq" )
  "genome.fa" "genome.fa" )
 )
 (outputfiles=
   ( "output.sam" "output.sam" )
 )
```

Sample ARC job script (runbwa.sh)

#!/bin/sh
echo "Hello BWA!"
bwa index genome.fasta
bwa aln -t \$BWA_NUM_CPUS genome.fasta query.fastq > out.sai
bwa samse genome.fasta out.sai query.fastq > output.sam
echo "Bye BWA!"
exit

csc

Using Grid	csc
 Run Time Environment (RT on a grid linked cluster (ar the servers of CSC) 	E): Definition file to use a software installed nalogous to the "module load" command in
Bioscience related Run Time Ehttps://confluence.csc.fi/dis	Environments in FGI: play/fgi/Grid+Runtime+Environments
 AMBER 12 AutoDock BLAST BOWTIE (0.12.7 and 2.0.0) BWA Cufflinks EMBOSS Exonerate Freesurfer FSL GROMACS GSNAP 	 GSNAP HMMER InterProscan Matlab compile runtime MISO MrBayes NAMD R/Bioconductor SAMtools SHRiMP TopHat

Using Grid

• At CSC you can use "Gridified" versions of some tools.

csc

csc

- These command line interfaces automatically split and submit the given task to be executed in the grid. The results are also automatically collected and merged.
- You don't have to know ARC to use these tools!

Gridified tools:

- BWA
- SHRiMP
- BLAST
- Exonerate
- InterProScan
- AutoDock
- · Please suggest a tool that should be "gridified"

pouta.csc.fi cloud service

https://confluence.csc.fi/display/csccloud/Using+Pouta

pouta.csc.fi cloud service

• Infrastructure as a Service (IaaS) a type of cloud computing service

- Users set up and run virtual machines at the servers of CSC (Taito)
- Motivation: The user does not need to buy hardware, network it and install operating systems, as this has already been handled by the cloud administrators
- Ready made virtual images available for CentOS and Ubuntu Linux.

• Independent from the CSC environment (no direct connection to CSC disk environment and software selection).

• Possible solution for cases where the normal servers of CSC can't be used:(very long run times, unusual operating system or software selection.)

pouta.csc.fi usage

• Open a computing project at CSC and use *My Cloud Resources* tool to request for Pouta account.

CSC

• Once you have the access, log in to Pouta-portal:

https://pouta.csc.fi

• Set up and launch a virtual machine according to the instructions in the Pouta user guide:

https://research.csc.fi/pouta-user-guide

• Login to the virtual machine with **ssh** and start using your virtual server.

Could compared to traditional HPC

	Traditional HPC environment	Cloud environment virtual machine
Operating system	Same for all: CSC's cluster OS	Chosen by the user
Software installation	Done by cluster administrators, customers can only install software to their own directories, no administrative rights	Installed by the user, the user has admin rights
User accounts	Managed by CSC's user administrator	Managed by the user
Security e.g. software patches	CSC administrators manage the common software and the OS	User has more responsibility: e.g. patching of running machines
Running jobs	Jobs need to be sent via the cluster's Batch Scheduling System	The user is free to use or not use a batch job system
Environment changes	Changes to software happen.	The user can decide on versions.
Snapshot of the environment	Not possible	Can save as a Virtual Machine image
Performance	Performs well for a variety of tasks	Very small virtualization overhead for most tasks, heavily I/O bound and MPI tasks affected more

						csc
Pouta virtı	ual machi	ne sizes				
						12
	Cores	Memory	Disk	Memory/core	Billing Units/h	
tiny	1	1 GB	120 GB	1	2	
small	4	15 GB	230 GB	4	8	
medium	8	30 GB	450 GB	4	16	-
large	12	45 GB	670 GB	4	24	
fullnode	16	60 GB	910 GB	4	32	