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Transcriptional regulation by transcription factors

Biological question

reasons for phenotypic
observations

regulation of gene expression

first step:
transcriptional regulation

⇒ transcription factor binding
sites

De-novo motif discovery
without knowledge of

motif

extact location of sites

from set of input sequences

[Based on Robert Tjian, “Molecular Machines

that Control Genes”]
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Experimental techniques - ChIP-seq

[Szalkowski & Schmid, Brief Bioinform, 2010]

Data

ChIP-seq peaks:
approximate binding regions

⇒ extract sequences under peaks

ChIP-seq peak statistics:
information about TF
abundance at binding region
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Experimental techniques - PBM

[Geertz & Maerkl, Brief Func Genom, 2010]

Data

PBM probes:
contain all possible DNA
10-mers

⇒ probe sequences
(length 35 bp + linker)

Probe intensities:
information about TF binding
frequency
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Requirements for a novel approach
Use all sequences
thresholding to extract top peaks/probes arbitrary
⇒ use all peaks and probe sequences, respectively

Use all information present in the data

ChIP-seq sequence under peak
peak statistics
binding more likely around peak center

PBM probe sequence (including part of linker)
probe intensities

Use discriminative learning principle
which often yield better results than generative principles

Allow for flexible choice of motif models
e.g., position weight matrices, weight array matrices,. . .

Retain acceptable runtime
below 1h for majority of data sets
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Weighting schema for integrating ChIP and PBM data

allows for using ChIP peak statistics and PBM probe intensities in a
common approach

w fg
n :=

1

1 + hn
1−hn ·

1−q
q

, wbg
n := 1− w fg

n

hn: relative rank of sequence xn based on peak statistic or probe intensity,
q: weighting factor, i.e., a-priori fraction of foreground sequences
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A-priori position distribution

represents that binding occurs close to peak center

ChIP−seq
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Discriminative learning - Motivation
ChIP-seq positives

ChIP-seq negatives

over-represented

differentially abundant

⇒ discriminative learning
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Discriminative learning - Objective function

Discriminative weighted maximum supervised posterior principle

λ̂ = argmax
λ

N∑
n=1

∑
c∈C

w c
n log

 P(c|λ)Pc(xn|λ)∑
c̃∈C

P(c̃|λ)Pc̃(xn|λ)


︸ ︷︷ ︸

Weighted conditional likelihood

+Q(λ|α)︸ ︷︷ ︸
Prior

,

where C = {fg , bg}: set of classes,

Q(λ|α): prior on the parameters λ given hyper-parameters α,

P(c|λ): a-priori class probability, and

Pc(xn|λ): class-conditional likelihood, “model”
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Dimont models

Pfg (x|λ) = P(motif|λ) · 1

|Σ|L−w
∑
`∈L

P(`)Pmotif(x`, . . . , x`+w−1|λ)

+ (1− P(motif|λ)) · 1

|Σ|L

Dimont uses standard ZOOPS model (Pfg (x|λ))

sequence flanking the motif: uniform, i.e., all nucleotides with equal
probability

motif model: strand model enclosing

position weight matrix (PWM): assumes nucleotide independence or
weight array matrix (WAM): allows dependencies between
neighboring nucleotides or
higher-order Markov models

background model: uniform or Markov model (Pbg (x|λ))
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Speed-up strategies

Idea:

pre-optimization on
reduced data set

evaluation of only
highest-scoring motif
occurrences
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Benchmark on PBM data

66 PBM data sets (Weirauch et al.)

protein binding microarray data for 66 TFs

two different array designs (HK/ME) with different probes

Task:
Learn motif on one design, predict binding intensities for other design

Algorithm Pearson corr. AUC-ROC Final

Dimont 0.695 0.951 1.002
FeatureREDUCE 0.693 0.949 0.997
Team D 0.691 0.938 0.984
Team E 0.696 0.906 0.952
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Benchmark on ChIP-seq data

26 ChIP-seq data sets (Ma et al.)

26 ChIP-seq data sets for TFs with known motifs

human, mouse, fly

Task:
Discover motif consistent with literature

Algorithm Total successes Average rank

Dimont 26 1.23
POSMO 23 1.00
ChIPMunk 23 1.00
MEME 22 1.32
DME 22 1.45
DREME 22 1.45
HMS 12 1.00
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Example motifs

CTCF

⇒ most motifs fit the literature well
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In-vivo vs in-vitro binding

⇒ good accordance between in-vivo and in-vitro binding, but notable
exceptions
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Dependencies between neighboring positions

CTCF

Figure S11: In case of CTCF, the detected dependencies are highly similar for all combinations of data sets.
One reason might be that, in contrast to all other cross-technology comparisons considered in this
paper, ChIP-seq as well as ChIP-exo measure in-vivo binding. We find significant dependencies
between position 4 and 5, between position 5 and 6, between position 12 and 13, and between
position 13 and 14 for all combinations of training and test data.
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Rap1

Figure S13: In case of Rap1, we find significant dependencies between neighboring positions only in case of
ChIP-exo test data. The dependencies between position (according to the motif discovered from
ChIP-exo data) 2 and 3, and between position 7 and 8 are consistently detected from ChIP-exo
and PBM training data. These positions are also among the positions with the greatest MI values
for PBM test data. Interestingly, the level of conservation of binding site positions is influenced
to a greater degree by the choice of the test data set than by the training data.
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Dimont@Chipster

Motif discovery with Dimont Jan Grau et al. 17



Dimont@Galaxy

Galaxy application

public server

convenient user interface

also available in Galaxy
Tool-Shed

galaxy.informatik.uni-halle.de

Galaxy-Server: 45 registered users, 500 runs (est.)

Galaxy Tool-Shed: 60 clones
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Command line

Command line application

<key>=<value> interface

easily scriptable

multi-threaded

java -jar Dimont.jar data=myseqs.fa infix=myresult position=peak

value=signal threads=8

available from www.jstacs.de/index.php/Dimont

290 downloads of command line program
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Conclusions

Dimont, a general approach for motif discovery

reliably discovers motifs from ChIP-seq and PBM data

achieves an acceptable runtime

In-vitro and in-vivo binding

often in good accordance

but notable exceptions

Availability

Chipster since version 2.11

public Galaxy at galaxy.informatik.uni-halle.de
and Galaxy Tool-Shed

command line application: www.jstacs.de/index.php/Dimont

Thank you for your attention!
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