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My talk will focus on two papers we have published on
ChlIP-seq peak callers:

Laajala TD, Raghav S, Tuomela S, Lahesmaa R, Aittokallio T, Elo LL. A
practical comparison of methods for detecting transcription factor binding
sites in ChlP-seq experiments. BMC Genomics. 2009 Dec 18;10:618. doi:
10.1186/1471-2164-10-618.

Here, we systematically compared existing peak detectors at
the time (2009) in terms of their features and performance on 4
varying data sets.

Elo LL, Kallio A, Laajala TD, Hawkins RD, Korpelainen E, Aittokallio T.
Optimized detection of transcription factor-binding sites in ChlP-seq
experiments. Nucleic Acids Res. 2012 Jan;40(1):e1. doi:
10.1093/nar/gkr839.

Here, we proposed a meta-analysis method (called peakROTS)
based on Elo’s ROTS-statistic for optimizing readily available
peak detectors.
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Laajala et al.
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Abstract

Background: Chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-
seq) is increasingly being applied to study transcriptional regulation on a genome-wide scale. While
numerous algorithms have recently been proposed for analysing the large ChiP-seq datasets, their
relative merits and potential limitations remain unclear in practical applications.

Results: The present study compares the state-of-the-art algorithms for detecting transcription
factor binding sites in four diverse ChIP-seq datasets under a variety of practical research settings.

Firct wa damanctrara haw tha hinlagiral rancliciane mav chanaa dramaticallv whan tha diffarant
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Table 1: Compared peak detectors

Table I: Peak detection algorithms investigated in the present study

Algorithm Availability Reference  Type Background
model

PeakFinder 2.0.1 Itech, ipseq_peak_finder 21 S.C none

GeneTrack 1.0.1  htpi//code.google.com/plgenetrack/ 9 s none

FindPeaks 3.1.9.2 b ioi 6] s uniform

SISSRs hetp:/fsissrs.rajajothi.com/ 1 S.C Poisson/

vi4 control sample

QuEST tanford. 8] c control sample

10

MACS hetp://liulab.dfciharvard.edu/MACS/ [0] S.C local Poisson/

13 control sample

CisGenome biostat jhsph.ed 5] S.C negative binomial/

vl control sample (binomial)

PeakSeq v1.01 http://www.gersteinlab.org/proj/PeakSeq/ 2 c local Poisson and

control sample (binomial)

Hpeak http://www.sph.umich.edu/csg/qin/HPeak/ - s.C hidden Markov model
11

The column Type indicates whether the method is applicable to a single sample analysis (S) or a two-sample analysis involving a control sample (C).

MACS is available in CSC’s Chipster-tool, F-seq not included here
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Table 2: Datasets

Table 2: ChiP-seq samples analysed in the present study

Sample Cell type Binding motif Reads (million) Reference
(Genomatix)

NRSF Jurkat VSNRSF.0! 23 o)}

Control Jurkat - 17 2}

NRSF mono Jurkat VSNRSF.0! 54 18]

NRSF poly Jurlat VSNRSF.0! 88 8

Control Jurkat - 174 18]

FoxAl MCF7 VSHNF3.01 39 o

Control MCF7 - 59 [10)

STAT6 Th2 I h VSSTAT6.01 30 Elo et al. (unpublished)
STAT6 Th24h VSSTAT6.01 27 Elo et al. (unpublished)
STAT6 The VSSTAT6.01 32 Elo et al. (unpublished)

Jurkat: Human T lymphocite; MCF7: Human BCa; Th: Human T helper
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Figure 1: Example calls
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Figure |
An example region identified as a STAT6 binding site at | h after polarization with IL4. The same region was iden-

tified as a STAT6 binding site with all the fourteen peak detection approaches applied in the present study. The number of
overlapping reads (y-axis) is shown at each genomic position (x-axis). The horizontal bars below the profile illustrate the
detected binding regions, as well as the high-scoring STAT6 binding motifs as determined using the Genomatix MatInspector
tool.
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Figure 2: Number of peaks and overlap (first half)

50000 - T
40000 +
30000 -

20000 -

10000 4 il
£ IEI E

Number of peaks

L
L

o

PeakFinderC
QuEST
PeakFinder
CisGenomeC
PeakSeq
GeneTrack
HpeakC
SISSRsC
CisGenome
MACSC
Hpeak
FindPeaks
MACS
SISSRs

with other methods

Teemu Daniel Laajala Comparison of ChlP-seq peak detectors



Figure 2: Number of peaks and overlap (continued)
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Figure 2

Numbers and overlaps of the detected peaks. The upper panel shows the median number of detected peaks across the

different ChIP samples and the corresponding minimum and maximum values (error bars). For the clarity of illustration, the

maximum values with SISSRs (78634) and CisGenome (78551) are cut out from the figure. The lower panel illustrates the

overlap of the detections with a particular method as compared to all the other methods. The median percentage of overlap-
eaks is shown t
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Figure 3: Locations of the called peaks
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CisGenome

may change when different algorithms
are applied. The physical distribution of the binding sites in the STAT6 data is shown at | h after polarization with IL4. The
binding sites were divided into three categories: 10 kb upstream/downstream of a transcription start/end site, within a gene
(intragenic), or over 10 kb from a gene (intergenic). The proportion of binding sites in each category is indicated by the col-
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Figure 4: Reproducibility in the NRSF samples
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Figure 5: Known motifs (low

; top peaks)
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Figure 5
External validation of the predicted binding sites using binding motifs. The sigr
peaks W|th the corresponding high-scoring sequence motifs (see Table 2 for the motif i




Summary of Laajala et al.
Laajala et al.

¢ Null distribution of reads is typically assumed to be poisson
or negative binomial in absence of a control sample

e Number of called peaks may change radically over
methods (default parameters)

e Inclusion of a biological control sample tended to work
better than using an idealized null distribution

e Less peaks & reproducibility vs. More peaks & explorative
novelty value? (analogy to p < 0.05 threshold)

Next, peakROTS

One method # one possible result. Tuning the parameters for a
method may radically change its results, so we explored
options in the parameter space in our next paper.
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Elo et al.

Optimized detection of transcription factor-binding
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ABSTRACT

We ional pr for opti-
mizing the blndlng site detections in a given
ChlIP-seq experiment by maximizing their reprodu-
cibility under bootstrap sampling. We demonstrate
how the procedure can improve the detection
accuracies beyond those obtained with the default
settings of popular peak calling software, or inform
the user whether the peak detection results are
compromised, circumventing the need for arbitrary
re-iterative peak calling under varying parameter
settings. The generic, open-source |mp|ementat|on
is easily to fea-
tures and to promote its widespread application in
future ChlP-seq studies. The peakROTS R-package
and user guide are freely available at http://www
.nic.funet.fi/pub/sci/molbio/peakROTS.

analysis. We have recently demonstrated that the choice of
the software package may considerably affect the biologic-
al conclusions made from the ChIP-seq data (7), calling
into question the validity of the binding site detections
unless they are carefully confirmed in independent qPCR
experiments. Another practical challenge is to decide
whether the data is similar enough to those on which a
specific peak calling algorithm was tuned to, in order to
justify the use of its default parameters (6). However, even
among the same type of data, variability in data quality
may necessitate using various parameter settings (8).
Accordingly, with the fixed default parameter settings,
the choice of the best package is strongly dependent on
the ChIP-seq data under analysis, making the selection
between the different packages and optimization of their
performance for a given data a challenging task (7.9,10).

To this end, we introduce here an adaptive procedure,
which provides the user with an informed means to opti-
mally adjust the parameters of a given software package
to the intrinsic properties of each ChIP-seq data set sep-
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Sampling and ROTS

Idea: If multiple rounds of a subset of random reads are picked
from a sample, analysis methods should yield consistent
results nevertheless.

Thus, we performed multiple rounds of boostrapping (sampling
with replacement) for a dataset, and computed ROTS for top k
peak lists:

Zk o - sk,a

* Ry, is the reproducibility of pairs of case-control samples
that have been bootstrapped from the actual dataset

. RO is the null reproducibility; combine case and control to
a smgle sample and compute reproducibilities over multiple
bootstrapped pairs of randomized samples

* Sk, is the standard deviation of bootstrapped
reproducibility

— choose the highest Z , of multiple candidates
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Parameter space

For example, MACS uses tag shifting and windowing to scan
chromosome regions and a dynamic Poisson distribution to
model the background signal. Over a lattice of possible
parameter candidates, we computed Z , for methods MACS
and PeakSeq (former covered in Laajala et al.):

shift size band width

1 100
1 300
1 500
5 100
200 500

The final choice of a tuned method should be the one that
yielded the highest Z . In general, our approach yielded as
good as or better results than if method was run only with the
default parameter values.
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Figure 1: Exploring the parameter space (QPCR

validated ChlP data)
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Pros and cons of the peakROTS approach

Meta-analysis that improves any currently available method
The sampling + exploring parameter space principle is
generalizable

An objective method for tuning in optimal parameters for a
method ...

e ... well not entirely objective. The choice of parameter
space is subjective, as we cannot test all possible
parameter combinations with infinite precision

e Requires extra computational effort (e.g. CSC cluster)
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Take home message

e There are multiple available methods, which vary in
software platforms, underlying assumptions, and practical
applicability

e Choice of a method affects the subsequent conclusions

e The optimal choice is data and application specific

e Less peaks — more conservative results and better
reproducibility

e More peaks — more candidates (and perhaps novel
discoveries from less prominent phenomena?)

e Reproducibility based sampling can help you optimize your
analysis approach when the ’correct’ answer is unknown

o Simplified: Test multiple possible ways to run a method,
and choose the one that yields the most consistent results
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Time for questions
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