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My talk will focus on two papers we have published on
ChIP-seq peak callers:

Laajala TD, Raghav S, Tuomela S, Lahesmaa R, Aittokallio T, Elo LL. A
practical comparison of methods for detecting transcription factor binding
sites in ChIP-seq experiments. BMC Genomics. 2009 Dec 18;10:618. doi:
10.1186/1471-2164-10-618.

Here, we systematically compared existing peak detectors at
the time (2009) in terms of their features and performance on 4
varying data sets.

Elo LL, Kallio A, Laajala TD, Hawkins RD, Korpelainen E, Aittokallio T.
Optimized detection of transcription factor-binding sites in ChIP-seq
experiments. Nucleic Acids Res. 2012 Jan;40(1):e1. doi:
10.1093/nar/gkr839.

Here, we proposed a meta-analysis method (called peakROTS)
based on Elo’s ROTS-statistic for optimizing readily available
peak detectors.
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Abstract
Background: Chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-
seq) is increasingly being applied to study transcriptional regulation on a genome-wide scale. While
numerous algorithms have recently been proposed for analysing the large ChIP-seq datasets, their
relative merits and potential limitations remain unclear in practical applications.

Results: The present study compares the state-of-the-art algorithms for detecting transcription
factor binding sites in four diverse ChIP-seq datasets under a variety of practical research settings.
First, we demonstrate how the biological conclusions may change dramatically when the different
algorithms are applied. The reproducibility across biological replicates is then investigated as an
internal validation of the detections. Finally, the predicted binding sites with each method are
compared to high-scoring binding motifs as well as binding regions confirmed in independent qPCR
experiments.

Conclusions: In general, our results indicate that the optimal choice of the computational
approach depends heavily on the dataset under analysis. In addition to revealing valuable
information to the users of this technology about the characteristics of the binding site detection
approaches, the systematic evaluation framework provides also a useful reference to the
developers of improved algorithms for ChIP-seq data.

Background
Chromatin immunoprecipitation (ChIP) enables the
identification of in vivo protein-DNA interactions under a
given condition or in a particular cell type. An important
application is the detection of transcription factor binding
sites to characterize the regulatory networks controlling,
for instance, various cellular processes or physiological
states. The high-throughput ChIP techniques are based on

identifying on a global scale the sequences and genomic
locations of the immunoprecipitated DNA fragments that
are bound by the transcription factor of interest. The most
common approach until now has been to hybridize the
DNA fragments to a tiling microarray (ChIP-chip) [1].
However, the fast development of the next-generation
massively parallel sequencing technologies, which enable
the direct sequencing of the DNA (ChIP-seq), has recently
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Table 1: Compared peak detectors
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Table 1: Peak detection algorithms investigated in the present study

Algorithm Availability Reference Type Background
model

PeakFinder 2.0.1 http://woldlab.caltech.edu/html/chipseq_peak_finder [2] S, C none

GeneTrack 1.0.1 http://code.google.com/p/genetrack/ [9] S none

FindPeaks 3.1.9.2 http://www.bcgsc.ca/platform/bioinfo/software/findpeaks/ [6] S uniform

SISSRs
v1.4

http://sissrs.rajajothi.com/ [11] S, C Poisson/
control sample

QuEST
1.0

http://mendel.stanford.edu/sidowlab/downloads/quest/ [8] C control sample

MACS
1.3

http://liulab.dfci.harvard.edu/MACS/ [10] S, C local Poisson/
control sample

CisGenome
v1

http://www.biostat.jhsph.edu/~hji/cisgenome/ [5] S, C negative binomial/
control sample (binomial)

PeakSeq v1.01 http://www.gersteinlab.org/proj/PeakSeq/ [12] C local Poisson and
control sample (binomial)

Hpeak
1.1

http://www.sph.umich.edu/csg/qin/HPeak/ - S, C hidden Markov model

The column Type indicates whether the method is applicable to a single sample analysis (S) or a two-sample analysis involving a control sample (C).

Table 2: ChIP-seq samples analysed in the present study

Sample Cell type Binding motif
(Genomatix)

Reads (million) Reference

NRSF Jurkat V$NRSF.01 2.3 [2]

Control Jurkat - 1.7 [2]

NRSF mono Jurkat V$NRSF.01 5.4 [8]

NRSF poly Jurkat V$NRSF.01 8.8 [8]

Control Jurkat - 17.4 [8]

FoxA1 MCF7 V$HNF3.01 3.9 [10]

Control MCF7 - 5.9 [10]

STAT6 Th2 1 h V$STAT6.01 3.0 Elo et al. (unpublished)

STAT6 Th2 4 h V$STAT6.01 2.7 Elo et al. (unpublished)

STAT6 Thp V$STAT6.01 3.2 Elo et al. (unpublished)

MACS is available in CSC’s Chipster-tool, F-seq not included here
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Table 1: Peak detection algorithms investigated in the present study

Algorithm Availability Reference Type Background
model

PeakFinder 2.0.1 http://woldlab.caltech.edu/html/chipseq_peak_finder [2] S, C none

GeneTrack 1.0.1 http://code.google.com/p/genetrack/ [9] S none

FindPeaks 3.1.9.2 http://www.bcgsc.ca/platform/bioinfo/software/findpeaks/ [6] S uniform

SISSRs
v1.4

http://sissrs.rajajothi.com/ [11] S, C Poisson/
control sample

QuEST
1.0

http://mendel.stanford.edu/sidowlab/downloads/quest/ [8] C control sample

MACS
1.3

http://liulab.dfci.harvard.edu/MACS/ [10] S, C local Poisson/
control sample

CisGenome
v1

http://www.biostat.jhsph.edu/~hji/cisgenome/ [5] S, C negative binomial/
control sample (binomial)

PeakSeq v1.01 http://www.gersteinlab.org/proj/PeakSeq/ [12] C local Poisson and
control sample (binomial)

Hpeak
1.1

http://www.sph.umich.edu/csg/qin/HPeak/ - S, C hidden Markov model

The column Type indicates whether the method is applicable to a single sample analysis (S) or a two-sample analysis involving a control sample (C).

Table 2: ChIP-seq samples analysed in the present study

Sample Cell type Binding motif
(Genomatix)

Reads (million) Reference

NRSF Jurkat V$NRSF.01 2.3 [2]

Control Jurkat - 1.7 [2]

NRSF mono Jurkat V$NRSF.01 5.4 [8]

NRSF poly Jurkat V$NRSF.01 8.8 [8]

Control Jurkat - 17.4 [8]

FoxA1 MCF7 V$HNF3.01 3.9 [10]

Control MCF7 - 5.9 [10]

STAT6 Th2 1 h V$STAT6.01 3.0 Elo et al. (unpublished)

STAT6 Th2 4 h V$STAT6.01 2.7 Elo et al. (unpublished)

STAT6 Thp V$STAT6.01 3.2 Elo et al. (unpublished)

Jurkat: Human T lymphocite; MCF7: Human BCa; Th: Human T helper
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Figure 1: Example calls
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factors considered in this study (Table 2), they were used
as an external source of information to assess the perform-
ance of the peak detection algorithms. For each sample,
the overlap of the predicted binding sites with the known
motifs was determined using the Genomatix RegionMiner
tool with default settings [19]. To deal with the potential
biases caused by the different peak widths, the motif z-
scores were considered, which measure the overrepresen-
tation of a motif against an equally sized sample of the
genomic background. With GeneTrack and QuEST, which
reported only a single coordinate for each peak, 200 bp
sequences from around the peak calls were utilized, simi-
larly as in [8]. These same regions were also used in the
other overlap calculations.

Finally, the performance of the peak detection algorithms
was evaluated with respect to regions that were confirmed
in independent qPCR experiments to be bound by the
particular transcription factor (true positives) as well as

regions that did not show binding (true negatives) in
these experiments. For NRSF, we used the 83 true positives
and 30 true negatives given in [20]. For FoxA1, 26 true
positives and 12 true negatives were obtained from [21].
For STAT6, we have tested a total of 25 regions at various
levels of read enrichment selected on the basis of manual
inspection to verify the ChIP-seq results at 4 h (Additional
file 1). Of these regions, 17 were confirmed to be bound
by STAT6. The known true positive and true negative
regions in each data allowed us to assess the performance
of the methods in terms of their receiver operating charac-
teristics (ROC), which consider both the sensitivity and
specificity of the detections. Additionally, an empirical
FDR estimate was calculated as the proportion of false
positives among the identified candidate peaks.

An example region identified as a STAT6 binding site at 1 h after polarization with IL4Figure 1
An example region identified as a STAT6 binding site at 1 h after polarization with IL4. The same region was iden-
tified as a STAT6 binding site with all the fourteen peak detection approaches applied in the present study. The number of 
overlapping reads (y-axis) is shown at each genomic position (x-axis). The horizontal bars below the profile illustrate the 
detected binding regions, as well as the high-scoring STAT6 binding motifs as determined using the Genomatix MatInspector 
tool.
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Figure 2: Number of peaks and overlap (first half)
BMC Genomics 2009, 10:618 http://www.biomedcentral.com/1471-2164/10/618
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Numbers and overlaps of the detected peaksFigure 2
Numbers and overlaps of the detected peaks. The upper panel shows the median number of detected peaks across the 
different ChIP samples and the corresponding minimum and maximum values (error bars). For the clarity of illustration, the 
maximum values with SISSRs (78634) and CisGenome (78551) are cut out from the figure. The lower panel illustrates the 
overlap of the detections with a particular method as compared to all the other methods. The median percentage of overlap-
ping peaks is shown together with the minimum and maximum values (error bars).
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Figure 2: Number of peaks and overlap (continued)
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Numbers and overlaps of the detected peaksFigure 2
Numbers and overlaps of the detected peaks. The upper panel shows the median number of detected peaks across the 
different ChIP samples and the corresponding minimum and maximum values (error bars). For the clarity of illustration, the 
maximum values with SISSRs (78634) and CisGenome (78551) are cut out from the figure. The lower panel illustrates the 
overlap of the detections with a particular method as compared to all the other methods. The median percentage of overlap-
ping peaks is shown together with the minimum and maximum values (error bars).
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Figure 3: Locations of the called peaks
BMC Genomics 2009, 10:618 http://www.biomedcentral.com/1471-2164/10/618

Page 9 of 15
(page number not for citation purposes)

reproduce the detections robustly across the replicates.
When all the peaks were considered, the best reproduci-
bility was observed with PeakFinderC and QuEST (Figure
4). With each method, the use of a negative control sam-
ple improved consistently the reproducibility of the detec-
tions. In general, GeneTrack, SISSRs, CisGenome and
Hpeak gave the lowest reproducibility values, which could
to a large extent be attributed to the fact that huge differ-
ences were observed in the numbers of detections across
the replicates. With these algorithms, the NRSF polyclonal
sample produced markedly more detections than the
other NRSF samples (even over a ten-fold number). Peak-
FinderC and QuEST, on the other hand, identified only a
relatively small number of peaks (2000-3000) and the
number of peaks was consistent across all the three sam-
ples.

When considering only the top 1000 or top 2000 peaks
with each algorithm, all the algorithms showed high
reproducibility and the overall differences between the
methods were typically negligible. Only SISSRsC showed
somewhat lower reproducibility values than the other
algorithms. The lower reproducibility of MACS with top

1000 peaks disappeared when the top 2000 detections
were considered.

External validation using binding motifs
A comparison of the detected peaks with high-scoring
sequence motifs confirmed that all the algorithms identi-
fied binding sites at a highly significant overlap with the
corresponding sequence motif (Figure 5). When the
whole set of detected peaks was investigated with each
algorithm (Figure 5, upper panel), in the NRSF data, the
most significant overlap was observed with QuEST, while
there were no systematic differences between the other
methods. With GeneTrack, SISSRs, CisGenome and
Hpeak, however, the variability between the samples was
large, the NRSF polyclonal sample performing considera-
bly worse than the other two samples. In the FoxA1 data,
MACSC was the best-performing approach in terms of the
sequence motifs, whereas PeakFinderC showed the least
significant motif overlap. In the STAT6 data, the most sig-
nificant overlap was observed with FindPeaks, while
MACS, which was among the best methods in the FoxA1
data, was among the poorest approaches together with
SISSRs and CisGenome.

A representative example demonstrating how biological conclusions may change when different algorithms are appliedFigure 3
A representative example demonstrating how biological conclusions may change when different algorithms 
are applied. The physical distribution of the binding sites in the STAT6 data is shown at 1 h after polarization with IL4. The 
binding sites were divided into three categories: 10 kb upstream/downstream of a transcription start/end site, within a gene 
(intragenic), or over 10 kb from a gene (intergenic). The proportion of binding sites in each category is indicated by the col-
ours.
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Figure 4: Reproducibility in the NRSF samples
BMC Genomics 2009, 10:618 http://www.biomedcentral.com/1471-2164/10/618
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When focusing only on the top 1000 candidates (Figure 5,
lower panel), the best-performing approaches in the NRSF
and FoxA1 datasets were QuEST and CisGenome, which
produced typically relatively narrow peak regions. This is
in line with the observation that all the methods are likely
to perform reasonably well when detecting the most
prominent peaks (Figure 4), in which case a more specific
detection of the actual binding site can be considered as a
benefit and is captured also by the motif z-score. In prin-
ciple, a narrower peak width can indicate a better resolu-
tion and can be beneficial, for instance, for the discovery
of de novo binding site motifs [5]. The top list size 2000
produced similar results (data not shown). In the STAT6
data, the overall number of peaks was much lower than in
the NRSF and FoxA1 datasets (often even less than 1000
peaks with the default settings), and several algorithms

could detect only less than 2000 peaks even if the detec-
tion thresholds were lowered from their default values. In
the STAT6 data, FindPeaks remained the best-performing
algorithm also when the top 1000 detections were evalu-
ated.

External validation using qPCR
To complement the motif overlap evaluations, qPCR-val-
idated regions were used to assess the sensitivity and spe-
cificity of the methods (Figure 6). In the NRSF data, all the
algorithms performed rather similarly in identifying the
validated positive and negative regions both when consid-
ering the whole set of detections as well as when focusing
on the top peaks only. In the FoxA1 data, the qPCR vali-
dations supported further the good performance of
MACSC when all the detections were used in the evalua-

Reproducibility of the detections across the three NRSF samplesFigure 4
Reproducibility of the detections across the three NRSF samples. With each method, the reproducibility was deter-
mined by first creating a union set of the detected regions and then assessing which of these regions were specific to only one 
of the samples under comparison and which were detected in both samples. The median reproducibility is shown together 
with the minimum and maximum values (error bars).
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Figure 5: Known motifs (upper; all peaks)
BMC Genomics 2009, 10:618 http://www.biomedcentral.com/1471-2164/10/618
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tion, while only one of the top 1000 binding sites was
included in the set of validated regions. Also in the STAT6
data, the qPCR validations were well in line with the motif
analysis results, suggesting the good performance of Find-
Peaks in these data. Importantly, besides demonstrating
the impact of the dataset on the relative performance of
the algorithms, the qPCR analyses supported the utility of
the motif significance assessments in choosing a suitable
algorithm for peak detection in cases in which the binding
motif is known. In each dataset, the method with the most
significant motif overlap was among the best algorithms
in terms of the qPCR validations.

The qPCR validations enabled also to determine an
empirical FDR for the detections. In the NRSF data, the
empirical FDR was below 0.05 with all the algorithms. In
the FoxA1 data, no negatives were detected with any of the
algorithms, giving an empirical FDR estimate of 0. In the

STAT6 data, the estimated FDR remained typically below
0.2. Notably, however, these values were often markedly
higher than those suggested by the background models of
the algorithms, supporting the earlier observation that
especially the Poisson-based randomization model can
severely underestimate the FDRs [22].

Discussion
The present study evaluated from a practical point of view
the performance of the currently available open source
software for detecting transcription factor binding sites in
ChIP-seq data. A main observation was that the choice of
the algorithm may considerably affect the overall conclu-
sions made from the data (Figure 3). Moreover, there was
no clear winner among the methods that would have out-
performed the other approaches systematically in each
dataset. Instead, the choice of the best method was
strongly dependent on the data under analysis (Figure 5).

External validation of the predicted binding sites using binding motifsFigure 5
External validation of the predicted binding sites using binding motifs. The significance of the overlap of the identified 
peaks with the corresponding high-scoring sequence motifs (see Table 2 for the motif identifiers) was assessed by the Genom-
atix RegionMiner software separately for each transcription factor (columns), either when using all the detected peaks (upper 
panel) or when focusing on the top 1000 peaks only (lower panel). The medians over the ChIP samples (bars) are shown 
together with the minimum and maximum values (error bars).
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Figure 5: Known motifs (lower; top peaks)

BMC Genomics 2009, 10:618 http://www.biomedcentral.com/1471-2164/10/618
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tion, while only one of the top 1000 binding sites was
included in the set of validated regions. Also in the STAT6
data, the qPCR validations were well in line with the motif
analysis results, suggesting the good performance of Find-
Peaks in these data. Importantly, besides demonstrating
the impact of the dataset on the relative performance of
the algorithms, the qPCR analyses supported the utility of
the motif significance assessments in choosing a suitable
algorithm for peak detection in cases in which the binding
motif is known. In each dataset, the method with the most
significant motif overlap was among the best algorithms
in terms of the qPCR validations.

The qPCR validations enabled also to determine an
empirical FDR for the detections. In the NRSF data, the
empirical FDR was below 0.05 with all the algorithms. In
the FoxA1 data, no negatives were detected with any of the
algorithms, giving an empirical FDR estimate of 0. In the

STAT6 data, the estimated FDR remained typically below
0.2. Notably, however, these values were often markedly
higher than those suggested by the background models of
the algorithms, supporting the earlier observation that
especially the Poisson-based randomization model can
severely underestimate the FDRs [22].

Discussion
The present study evaluated from a practical point of view
the performance of the currently available open source
software for detecting transcription factor binding sites in
ChIP-seq data. A main observation was that the choice of
the algorithm may considerably affect the overall conclu-
sions made from the data (Figure 3). Moreover, there was
no clear winner among the methods that would have out-
performed the other approaches systematically in each
dataset. Instead, the choice of the best method was
strongly dependent on the data under analysis (Figure 5).

External validation of the predicted binding sites using binding motifsFigure 5
External validation of the predicted binding sites using binding motifs. The significance of the overlap of the identified 
peaks with the corresponding high-scoring sequence motifs (see Table 2 for the motif identifiers) was assessed by the Genom-
atix RegionMiner software separately for each transcription factor (columns), either when using all the detected peaks (upper 
panel) or when focusing on the top 1000 peaks only (lower panel). The medians over the ChIP samples (bars) are shown 
together with the minimum and maximum values (error bars).
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Summary of Laajala et al.

Laajala et al.
• Null distribution of reads is typically assumed to be poisson

or negative binomial in absence of a control sample
• Number of called peaks may change radically over

methods (default parameters)
• Inclusion of a biological control sample tended to work

better than using an idealized null distribution
• Less peaks & reproducibility vs. More peaks & explorative

novelty value? (analogy to p < 0.05 threshold)

Next, peakROTS
One method 6= one possible result. Tuning the parameters for a
method may radically change its results, so we explored
options in the parameter space in our next paper.
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ABSTRACT

We developed a computational procedure for opti-
mizing the binding site detections in a given
ChIP-seq experiment by maximizing their reprodu-
cibility under bootstrap sampling. We demonstrate
how the procedure can improve the detection
accuracies beyond those obtained with the default
settings of popular peak calling software, or inform
the user whether the peak detection results are
compromised, circumventing the need for arbitrary
re-iterative peak calling under varying parameter
settings. The generic, open-source implementation
is easily extendable to accommodate additional fea-
tures and to promote its widespread application in
future ChIP-seq studies. The peakROTS R-package
and user guide are freely available at http://www
.nic.funet.fi/pub/sci/molbio/peakROTS.

INTRODUCTION

Chromatin immunoprecipitation coupled with deep se-
quencing (ChIP-seq) has offered a powerful means for
genome-wide mapping of transcription factor-binding sites
(1–4). Owing to the recent advances in the next-generation
sequencing technology, the current ChIP-seq experiments
are generating increasing amounts of data, the analysis of
which is a computational challenge (4–6).

Despite the availability of a number of advanced soft-
ware packages (4), the users are still facing the crucial
challenge of deciding which package, along with its adjust-
able parameters, is most suitable for their specific needs so
that they can extract full information from the data under

analysis. We have recently demonstrated that the choice of
the software package may considerably affect the biologic-
al conclusions made from the ChIP-seq data (7), calling
into question the validity of the binding site detections
unless they are carefully confirmed in independent qPCR
experiments. Another practical challenge is to decide
whether the data is similar enough to those on which a
specific peak calling algorithm was tuned to, in order to
justify the use of its default parameters (6). However, even
among the same type of data, variability in data quality
may necessitate using various parameter settings (8).
Accordingly, with the fixed default parameter settings,
the choice of the best package is strongly dependent on
the ChIP-seq data under analysis, making the selection
between the different packages and optimization of their
performance for a given data a challenging task (7,9,10).
To this end, we introduce here an adaptive procedure,

which provides the user with an informed means to opti-
mally adjust the parameters of a given software package
to the intrinsic properties of each ChIP-seq data set sep-
arately. The procedure is based on the concept of
maximizing the reproducibility of the binding site detec-
tions under random bootstrap sampling of the original
data, while preserving the given ChIP and control sample
labels. We have successfully used a similar concept in the
context of other high-throughput profiling platforms, such
as those based on gene-expression microarray or quanti-
tative mass-spectrometry (MS) technologies (11). From an
end-user perspective, rather than introducing new variants
of the existing algorithmic solutions, some of which have
been developed on—and perhaps also tuned to—particu-
lar data sets, it is more important to make the most of the
currently used data analysis packages in a wide variety of
application use cases. Here, using five human and one

*To whom correspondence should be addressed. Tel: +358 2 333 6027; Fax: +358 2 333 6595; Email: laliel@utu.fi
Correspondence may also be addressed to Tero Aittokallio. Tel: +358 2 333 6027; Fax: +358 2 333 6595; Email:tero.aittokallio@fimm.fi
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� The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
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Sampling and ROTS

Idea: If multiple rounds of a subset of random reads are picked
from a sample, analysis methods should yield consistent
results nevertheless.
Thus, we performed multiple rounds of boostrapping (sampling
with replacement) for a dataset, and computed ROTS for top k
peak lists:

Zk ,α =
Rk,α−R0

k,α
sk,α

• Rk ,α is the reproducibility of pairs of case-control samples
that have been bootstrapped from the actual dataset

• R0
k ,α is the null reproducibility; combine case and control to

a single sample and compute reproducibilities over multiple
bootstrapped pairs of randomized samples

• sk ,α is the standard deviation of bootstrapped
reproducibility

→ choose the highest Zk ,α of multiple candidates
Teemu Daniel Laajala Comparison of ChIP-seq peak detectors



Parameter space

For example, MACS uses tag shifting and windowing to scan
chromosome regions and a dynamic Poisson distribution to
model the background signal. Over a lattice of possible
parameter candidates, we computed Zk ,α for methods MACS
and PeakSeq (former covered in Laajala et al.):

shift size band width
1 100
1 300
1 500
5 100

... ...
200 500

The final choice of a tuned method should be the one that
yielded the highest Zk ,α. In general, our approach yielded as
good as or better results than if method was run only with the
default parameter values.

Teemu Daniel Laajala Comparison of ChIP-seq peak detectors



Figure 1: Exploring the parameter space (qPCR
validated ChIP data)

different parameter settings (including the ROTS-defined
and default settings), the scaled F-levels can quantify the
relative difference between any given parameter combin-
ations from a more practical point of view. The original
F-scores (Default, ROTS, Min and Max) are available in
Supplementary Figure S2.
The calculation of the F and F0-scores was based on the

relative frequency of the true positives with respect to
regions that were confirmed in independent qPCR experi-
ments to be bound by the particular transcription factor
(known positives), as well as regions that did not show
binding in these experiments (known negatives). As has
been noted before, assessing the relative frequency of
false positives (or specificity) in the binding site detection
is challenging, because of the question how to define
reliably the true negative detections (9,22). Therefore,
the specificity was not assessed in this study.

Implementation of the peakROTS package

We have made available an implementation of the ROTS
procedure for ChIP-seq data (named peakROTS) as a stand-
alone, open-source R package (Supplementary Tutorial,
http://www.nic.funet.fi/pub/sci/molbio/peakROTS) The im-
plementation is platform independent, requiring only an
R environment (http://www.r-project.org). To facilitate

in-depth searching through large parameter spaces, we
have modularized the implementation so that it can be
efficiently distributed across multiple computing cores,
allowing large computational resources to be utilized
effectively. The infrastructure needed for the distributed
computing is included in the R package. The current im-
plementation supports both a local process-based distri-
bution (single node, multiple cores), as well as an LSF
batch processing system (multiple nodes). The distribution
mechanism can be plugged-in to enable running different
parts of any single analysis task even using different dis-
tribution mechanisms. The results presented here were
computed on a HP CP4000 BL ProLiant cluster system
(http://www.csc.fi/english/research/Computing_services/
computing/servers/murska), using at maximum 512
computing cores via the LSF batch processing system.

When the analysis task is initialized, the peakROTS
package generates a workflow graph, which describes the
dependencies between the individual analysis steps
(Supplementary Figure S3). In the actual computation,

A

B

Figure 2. Accuracy of the binding site detections when using the ROTS
or default parameter settings in MACS (A) and PeakSeq (B). The de-
tection accuracy was evaluated using the scaled F-score (see ‘Materials
and Methods’ section), which shows the practical difference between
the two parameter combinations with respect to the highest and lowest
possible accuracies that can be obtained, given the independent qPCR
validations and the pre-defined parameter space. The scaled F-score
was used here to compare the relative performance across the different
data sets (FoxA2 data set is from a mouse system, while the others are
human data sets); all the original F-scores (Default, ROTS, Min and
Max) are available in Supplementary Figure S2. To summarize the
detection accuracies across all the six data sets in one histogram, the
stable F-scores are shown, which correspond to the top-k levels at
which the increase in the accuracy stabilized (indicated by arrows in
Figure 1 and Supplementary Figure S1). The overall difference between
the ROTS and default parameters was statistically significant across the
data sets (paired t-test, P< 0.05).

Figure 1. Accuracy of the binding site detections in the STAT1_1 data
set as a function of top peaks identified by the MACS algorithm. The
accuracy of the peak calling parameter combinations was evaluated
with respect to independent qPCR validations using the F-score
(see ‘Materials and Methods’ section). The grey traces show the variability
in the accuracy when different parameter combinations were used. The
red and blue traces, respectively, indicate the accuracy of the parameter
values learned by the reproducibility optimization procedure (ROTS),
compared to the default settings of the software package. The insert
shows the F-levels at the cut-off point in which the increase in the
accuracy stabilizes (the arrow). The green and black bars, respectively,
indicate the highest and lowest F-scores among all the parameter com-
binations tested at the given cut-off point (the green and black points,
respectively). The trace graphs were smoothed for displaying purposes.
MACS detections in STAT1 were used here as an example; all the
MACS and PeakSeq results are provided as Supplementary Figure S1.
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F = 2PR/(P + R); P = Precision, R = Recall
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Pros and cons of the peakROTS approach

Pros
• Meta-analysis that improves any currently available method
• The sampling + exploring parameter space principle is

generalizable
• An objective method for tuning in optimal parameters for a

method ...

Cons
• ... well not entirely objective. The choice of parameter

space is subjective, as we cannot test all possible
parameter combinations with infinite precision

• Requires extra computational effort (e.g. CSC cluster)

Teemu Daniel Laajala Comparison of ChIP-seq peak detectors



Take home message

• There are multiple available methods, which vary in
software platforms, underlying assumptions, and practical
applicability

• Choice of a method affects the subsequent conclusions
• The optimal choice is data and application specific
• Less peaks→ more conservative results and better

reproducibility
• More peaks→ more candidates (and perhaps novel

discoveries from less prominent phenomena?)
• Reproducibility based sampling can help you optimize your

analysis approach when the ’correct’ answer is unknown
• Simplified: Test multiple possible ways to run a method,

and choose the one that yields the most consistent results
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Thanks!

Time for questions
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