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Why do
Chromatin Immunoprecipitation (ChlP)?

~99.9% identical genetic material




100% identical genetic material
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ChIP to understand transcriptional regulation!

Map regulatory elements:

Transcription Factors
—ChIP

Histone marks
—ChIP

DNA Methylation
—MeDIP etc.

Nucleosomes

RNA Polymerase
—Pol Il ChIP




ChlP-seq protocol
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Analysis of ChlP-seq data

Experimental design

—Controls and replicates
QC/Read processing

—Library QC

—Alignment and filtering

—QC measures and assessment
Peak calling

—Peak callers

Differential binding analysis
—Occupancy-based analysis
—Affinity-based analysis

Validation and downstream

analysis
—Motif analysis
—Annotation
—Integrating binding and
expression data



ENCODE project
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Landt et al. (2012) ChIP-seq guidelines and practices of the ENCODE and
modENCODE Consortia. Genome Research 22: 1813-1831

Chen et al. (2012) Systematic evaluation of factors influencing ChIP-seq
fidelity. Nat Methods 9: 609




Comparison of ChlIP-chip and ChlP-Seq




Comparison of ChlP-chip & chip-Seq

ChIP-chip Chip-Seq
limited by array
coverage . whole genome
(genome size, repeats)
: 30~150b
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Comparison of ChlP-chip & ChIP-Seq

~50bp

ChIP—chip
—resolution

ChiP—seq | ‘ — noise

ChiIP—seq input DNA
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Comparison of ChlP-chip & ChIP-Seq

good correlation poor correlation for
for medium high and low
expression expression
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Experimental considerations
for down-stream analysis




Consideration 1: How good is your antibody?

e ChlIP-Seq data depend on antibody quality

e modENCODE project:

e large-scale screening for histone modifications in flies

e 20-35% of commercial ‘ChIP-grade’ antibodies were unusable

e variations between antibodies

e differences in antibody specificity can make it hard to compare data
across multiple transcription factors

e efforts are made to have a list of ‘approved’ antibodies for histone
modifications

[Celniker et al 2009; Vaquerizas et al, 2008; Egelhofer et al 2011]
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Consideration 2: Why do you need controls?

e Controls can be generated by:

(cross-linking), lysing and fragmenting the cells but not continuing with
IP (that’s the most popular way of generating a control sample)

(cross-linking), lysing and fragmenting the cells and performing a mock
IP (IP without antibody)

performing an IP with an antibody that is not known to be involved in
DNA or chromatin binding (e.g. 1gG)

(if the genome of the sample being studied has been sequenced using
similar technology, one can possibly use this as a control)



Consideration 2: Why do you need controls?

e skipped in early experiments:
® cost

e over-confidence in ChIP-Seq data quality

e But there are artefacts from sample preparation & sequencing
e copy number variation
e non-uniform fragmentation
e non-specific pull-down

e incorrect mapping of repetitive genomic regions

e GCsequencing bias (http://beads.sourceforge.net [Cheung et al 2011])

e problems become more acute in larger genomes




Consideration 2: Why do you need controls?

* Non-uniform fragmentation (euchromatin-heterochromatin)
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Consideration 2: Why do you need controls?
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Consideration 2: Do you need controls?
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Consideration 2: Why do you need controls?
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The more sequencing depth you have for the input the better you can identify peaks!

[Chen et al, 2012]



Consideration 3: Sequencing depth

e sequencing depth depends on genome size, protein & biological
guestion

e one lane gives ~35 million reads (over 100 million reads — HiSeq)
e ~270x genomic coverage for bacteria
e ~10x coverage for fly

e ~0.4x coverage for human

e proteins bind genome in different ways
e chromatin & Pol Il cover the genome

e sequence-specific TFs are more confined




Consideration 3: Sequencing depth
Proteins bind in different ways
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M. musculus

Consideration 3: Sequencing depth
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Consideration 3: Sequencing depth

Fraction of reference calls
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Consideration 3: Sequencing depth
(optimum is different for different peak finder software)
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Plateau for most peak finders ~16.2 M reads in Drosophila (corresponding to ~327 M
reads in human) [Chen et al, 2012]




Reproducibility information gives confidence in

How many replicates? peaks, helps choosing thresholds (IDR)

How many reads do you need?
e The more the better!

How long should reads be?

Do you need paired end reads?
e (Can help with mapping but not nearly as important as for identifying
indels in DNA sequencing or multiple isoforms in RNA-seq (can be

important for proteins/modifications that are in repetitive elements)
* There is a difference when you m Unique pairs

assess the complexity of the sample
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Data processing steps

sequencing

alignment
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Sy ke peak-finding ChiIP-seq
1 experiments

[Park et al, 2009]




Quality control

Many tools (SAMstat, htSeqTools, fastQC etc.)

* Read quality

* Sequence content

Duplication (PCR artefacts)

e Library complexity (overrepresented sequences)

e Contamination




Quality control

Many tools (SAMstat, htSeqTools, fastQC etc.)

* Read quality

¢ Sequence content

Duplication (PCR artefacts)

e Library complexity (overrepresented sequences)

e Contamination




Quality control

Many tools (SAMstat, htSeqTools, fastQC etc.)

Sequence Duplication Level > = 62.52%

* Read quality . \\
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e Library complexity (overrepresented sequences)

e Contamination




Quality control

Many tools (SAMstat, htSeqTools, fastQC etc.)
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Genome alignment

e Choice of software depends on:

e accuracy, speed, memory, flexibility e.g. BWA, Bowtie

e (Questions:

e allow for mis-matches between reads and reference genome?

e (if you are interested in allele-specific binding care must be taken, since in
some regions reads containing the non-reference allele might not be aligned
well)

e multiple matches to reference?




Genome alignment

sequencing occurs 5’
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Strand information for quality control
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Peak-finding
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M. musculus

Basic idea: Count the number of reads in windows and determine whether this number is
above background — if so, define that region as bound




MACS 2.0

(a)

to the center of Watson and Crick peaks (bp)

(c)

USeq

Windows -> Binding Peaks

Overiapping windows
J cnip
J ke 4
Input
P o o | & — _ .
Enriched Regions/ Binding Peaks
Binomial
N 1

152,200,000 152,205,000 152,210,000 152,215,000

Calculating peakshift for
1000 best peaks

Shift reads 3’

Identify potentially bound
regions

Calculate enrichment and
significance using poisson
distribution with local A

Calculating peakshift
Shift reads 3’
Define windows

Calculate enrichment per window,
significance using negative binomial

Join regions that are within max gap

eFDR

SISSRs

A Actual binding site

ChIP-Seq DNA Fragments
A

Reference genome

Mapped reads

+ve to —ve transition point (f),
a candidate binding site

+ve /
—-ve
—

w-bp window

Net Tag Count

Net tag-count (c)) = # sense tags —
# anti-sense tags in window i

Estimate fragment length
(mean sense-antisense dist)

Windows with w/2 shift
through genome

Define potential peaks by
transition in net tag count

(n n

sense ' 'antisense)

Calculate enrichment and
significance using poisson



Downstream of ChIP

[Park 2009]
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