Introduction to amplicon sequence variant (ASV) analysis

Outline

- \circ What are the differences if compared to OTUs
- DADA2 workflow

Amplicon sequence variants

- Biological sequences which can differ by just 1 nucleotide
- Provide increased resolution and sensitivity if compared to OTUs
 - OTU approach clusters sequences together, typically at 97% similarity threshold, in order to remove sequencing errors
 - ASV approach uses abundance and error model in order remove sequencing errors, so clustering is not needed
- Generated without a reference \rightarrow no reference bias
- Exact sequences, so ASV tables can be compared across studies
- Chimera detection is simpler than with OTUs
- A given target gene should always generate the same ASV • Thus, ASVs can be added to reference databases and merged to other datasets

OTU vs ASVs

Schematic of OTU and DADA2 approaches towards amplicon sequencing errors.

CSC

Figure describing the difference between *Amplicon Sequence Variants* (**ASVs**) *vs Operational Taxonomic Units* (**OTUs**) (figure adapted from (Callahan et al. 2016. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data)).

DADA₂

• DADA2 = <u>D</u>ivisive <u>A</u>mplicon <u>D</u>enoising <u>A</u>lgorithm

o R based library

 Callahan, B. *et al. 2016.* DADA2: High-resolution sample inference from Illumina amplicon data. https://doi.org/10.1038/nmeth.3869

- Uses the abundance data and the error model to remove sequencing errors and to detect ASVs
- Balance between sensitivity and specificity

DADA2 in Chipster

- The DADA2 analysis tools in Chipster cover the DADA2 tutorial workflow ohttps://benjjneb.github.io/dada2/tutorial.html
- Analysis examples use the MiSeq 16S data (<u>https://mothur.org/wiki/miseq_sop/</u>)
- Analysis of ITS data and data produced with IonTorrent are possible as well • Key differences in the workflow will be covered
- Requirements
 - o The samples have to be demultiplexed: Split to per-sample FASTQ files

Overview of the ASV preprocessing pipeline in Chipster

- 1. Make a Tar package
- 2. Quality control with MultiQC
- 3. (Remove primers/adapters with Cutadapt)
- 4. Filter and trim reads
- 5. Sample/ASV inference
- 6. (Combine paired reads to contigs)
- 7. Make an ASV table and remove chimeras
- 8. Assign taxonomy
- 9. Make a phyloseq object
- 10. Merge phenodata to the phyloseq object
- 11. Continue community analysis with the same tools than after the OTU based workflow

Filter and trim reads with DADA2

Outline

- Why read filtering and trimming is important
- Things to take into account
- What trimming and filtering options are available
- How to set the parameters in Chipster
- What are the output files

Filter and trim reads with DADA2

- Critical step in ASV workflow
 - $\circ\,\text{Ns}$ need to be removed
 - o Remove low quality ends and too short reads
 - \circ Cleaned data runs more efficiently and gives more accurate results
 - $\circ\, {\rm Reads}$ matching the phiX genome are removed
- Based on the DADA2 tool filterAndTrim()
- Optimal parameter values depend on your data
- If paired end reads, both reads need to pass the filter in order to be kept
- Input file: Tar package of FASTQ files
 - You can make it with the tool "Make a tar package"
 - FASTQ files can be compressed

Use MultiQC report to decide on trimming parameters

- Quality scores tend to decrease towards the end of the reads
- The quality of reverse reads is often worse in Illumina sequencing

CSC

Trim based on position or quality of a base

5

5

Truncate forward reads after this amount of bases 240 Default 0 means no truncation. Truncate reads after truncLen bases. Reads shorter than this are discarded. You can use this parameter for single and paired end reads. Truncate reverse reads after this amount of bases 160 Default 0 means no truncation. Truncate reads after trunclien bases. Reads shorter than this are discarded. Use only for paired end reads. Truncate reads after this base quality 2 Truncate reads at the first instance of a quality score less than or equal to the specified number. Setting this parameter to 0, turns this behaviour off. The number of nucleotides to remove from start of each read 0 The number of nucleotides to remove from the start of each read. If both truncLen and trimLeft are provided, filtered reads will have length truncl.en - triml.eft. Remove reads which are shorter than this 0 Removes reads which are shorter than the specified value. Min length is enforced after all other trimming and truncation. This parameter is especially usefull when truncLen parameter is not used for example with

• You can define values for reverse and forward reads independently

- NOTE: paired reads need to overlap so that they can be combined into contigs later
- If read length or the length of the amplified (ITS) region varies, use the parameter "Remove reads which are shorter than this" instead.

ITS data.

Filter based on the number of Ns and expected errors

- Ns need to be removed before the next analysis steps
- Maximun number of expected errors allowed for a read
 - Expected errors are calculated as the sum of error probabilities, $EE = \sum 10^{-Q/10}$
 - More info <u>https://doi.org/10.1093/bioinformatics/btv401</u>

Dofault ic a		
Derduit is 2	Discard input sequences with more than specified number of Ns Ns Sequences with more than the specified number of Ns will be discarded. Note that the dada function does not allow any Ns.	0
	Discard forward sequences with more than the specified number of expected errors After truncation, reads with more than this amount of expected errors will be discarded. If this parameter is not set, no expected error filtering is done. You can use this parameter for single and paired end reads.	
	Discard reverse sequences with more than the specified number of expected errors After truncation, reads with more than this amount of expected errors will be discarded. If this parameter is not set, no expected error filtering is done. Use only for paired end reads.	

Output files

- Filtered.fastqs.tar
- Summary.tsv
- Samples.fastqs.txt

Samples.fastqs.txt

F3D0	F3D0_S188_L001_R1_001.fastq	F3D0_S188_L001_R2_001.fastq
F3D141	F3D141_S207_L001_R1_001.fastq	F3D141_S207_L001_R2_001.fastq
F3D142	F3D142_S208_L001_R1_001.fastq	F3D142_S208_L001_R2_001.fastq
F3D143	F3D143_S209_L001_R1_001.fastq	F3D143_S209_L001_R2_001.fastq
F3D144	F3D144_S210_L001_R1_001.fastq	F3D144_S210_L001_R2_001.fastq
F3D145	F3D145_S211_L001_R1_001.fastq	F3D145_S211_L001_R2_001.fastq
F3D146	F3D146_S212_L001_R1_001.fastq	F3D146_S212_L001_R2_001.fastq
F3D147	F3D147_S213_L001_R1_001.fastq	F3D147_S213_L001_R2_001.fastq
F3D148	F3D148_S214_L001_R1_001.fastq	F3D148_S214_L001_R2_001.fastq
F3D149	F3D149_S215_L001_R1_001.fastq	F3D149_S215_L001_R2_001.fastq
F3D150	F3D150_S216_L001_R1_001.fastq	F3D150_S216_L001_R2_001.fastq

Summary.tsv

Showing all 19 rows.

	reads.in	reads.out
F3D0	7793	7135
F3D141	5958	5477
F3D142	3183	2928
F3D143	3178	2959
F3D144	4827	4342
F3D145	7377	6787
F3D146	5021	4580
F3D147	17070	15719
F3D148	12405	11452
F3D149	13083	12059
F3D150	5509	5046
F3D1	5869	5316
F3D2	19620	18137
F3D3	6758	6282
F3D5	4448	4069
F3D6	7989	7394
F3D7	5129	4777
F3D8	5294	4885
F3D9	7070	6520

Trim primers and adapters with Cutadapt

Outline

- What are adapter sequences
- How to identify adapters and check the correct orientation
- What are the adapter trimming options in Chipster
- How to use Cutadapt to trim adapters
- Things to take into account
- What are the resulting output files

Adapter / primer sequences

- Adapter sequences need to be removed prior to analysis
- Removal is more complicated if some reads extend into the opposite primer

 Can occur if the amplified region is shorter than the read length
 If paired end reads, each read may or may not have the forward and reverse primer

CSC

Tools to remove and identify adapters in Chipster

- Cutadapt
- Trimmomatic

Can be used to trim adapters from paired end and single end reads
 Has many quality trimming and filtering options

- Identify primers and the correct orientation
 Can be used to check if reads contain adapter sequences and in which orientation
- Predict primers/adapters with TagCleaner
 Can be used to find adapter sequences if those are not known.
- Many trimming tools have an option to trim a fixed length of bases from the start or end of the reads

Identify primers and the correct orientation

- Checks if given 5' and 3' primer/adapter sequences are present in the reads and in which orientation
 - \circ Run before and after a adapter trimming tool to see if the adapters were removed
- Remove ambiguous nucleotides first with the tool "Filter and trim reads with DADA2"
- Test every orientation of the 3' and 5' adapters o Forward – Compelement – Reverse – Reverse complement
- Input

FASTQ files of one sampleTar package of FASTQ files

Output files

Primer_summary.tsv

Showing all 4 rows.

	Forward	Complement	Reverse	RevComp
Forward_reads_5adapter	4214	0	0	0
Forward_reads_3adapter	0	0	0	3590
Reverse_reads_5adapter	0	0	0	3743
Reverse_reads_3adapter	4200	0	0	0

Orientations_summary.txt

Check all orientations of the given primers/adapters.

Reads are paired end.

The forward file used to check the adapters: SRR5314314_F_filt.fastq.gz The reverse file used to check the adapters: SRR5314314_R_filt.fastq.gz

All orientations of the 5' adapter: Forward: ACCTGCGGARGGATCA Complement: TGGACGCCTYCCTAGT Reverse: ACTAGGRAGGCGTCCA RevComp: TGATCCYTCCGCAGGT

All orientations of the 3' adapter: Forward: GAGATCCRTTGYTRAAAGTT Complement: CTCTAGGYAACRAYTTTCAA Reverse: TTGAAARTYGTTRCCTAGAG RevComp: AACTTTYARCAAYGGATCTC

Trim adapters with Cutadapt

• Based on Cutadapt

• MARTIN, Marcel. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. https://doi.org/10.14806/ej.17.1.200.

- Input
 - $\circ\, {\rm Tar}\, {\rm package}\, {\rm of}\, {\rm FASTO}\, {\rm files}$
- Need to specify whether the reads are paired or single end
- Give the 5' and 3' adapters in the orientation they are found in the forward sequence

 Use the tool "Identify primers and the correct orientation" to find and copy the right
 orientation
- 3' adapters and any sequence following it is removed
- 5' adapter and any sequence preceding it is removed
- Be carefull not to trim adapters from wrong ends!

Example

Showing all 4 rows.

		Forward	Complement	Reverse	RevComp
-	Forward_reads_5adapter	4214	0	0	0
T)	Forward_reads_3adapter	0	0	0	3590
	Reverse_reads_5adapter	0	0	0	3743
	Reverse_reads_3adapter	4200	0	0	0

All orientations of the 5' adapter: Forward: ACCTGCGGARGGATCA Complement: TGGACGCCTYCCTAGT Reverse: ACTAGGRAGGCGTCCA

TGATCCYTCCGCAGGT

All orientations of the 3' adapter: Forward: GAGATCCRTTGYTRAAAGTT Complement: CTCTAGGYAACRAYTTTCAA Reverse: TTGAAARTYGTTRCCTAGAG RevComp: AACTTTYARCAAYGGATCTC

_	<u>۱</u>
7	
5	/
-	*

Parameters		S Reset All	
Is the data paired end or single end reads Are all the reads paired end, so one forward and one reverse FASTQ file for one sample.	paired	~	
The 5' adapter: Give here the 5 end adapter/primer	ACCTGCGGARGGATCA	ზ	
The 3' adapter: Give here the 3 end adapter/primer	AACTTTYARCAAYGGATCTC	5	

CSC

RevComp:

2)

Output files

- Adapters_removed.tar
- Report.txt
- Samples.fastqs.txt

Samples.fastqs.txt

SRR5314314	SRR5314314_1.fastq.gz	SRR5314314_2.fastq.gz
SRR5314315	SRR5314315_1.fastq.gz	SRR5314315_2.fastq.gz
SRR5314316	SRR5314316_1.fastq.gz	SRR5314316_2.fastq.gz
SRR5314317	SRR5314317_1.fastq.gz	SRR5314317_2.fastq.gz
SRR5314331	SRR5314331_1.fastq.gz	SRR5314331_2.fastq.gz
SRR5314332	SRR5314332_1.fastq.gz	SRR5314332_2.fastq.gz
SRR5314333	SRR5314333_1.fastq.gz	SRR5314333_2.fastq.gz
SRR5314334	SRR5314334_1.fastq.gz	SRR5314334_2.fastq.gz
SRR5314335	SRR5314335_1.fastq.gz	SRR5314335_2.fastq.gz
20		

Report.txt

- Big file, contains a report for every sample
- Contains all the relevant information how the adapters were removed
- Always check where the adapters were found and how many bases were removed

This is cutadapt 4.1 with Python 3.8.11 Command Line parameters: -g ACCTCGCGARGGATCA -a AACTTTYARCAAYGGATCTC -G GAGATCCRTTGYTRAAAGTT -A TGATCCYTCCGCAGGT -n 2 -j 2 -o out Processing paired-end reads on 2 cores ... Finished in 2.77 s (44 µs/read; 1.37 M reads/minute).

=== Summary ===

 Total read pairs processed:
 63,398

 Read 1 with adapter:
 47,992 (75.7%)

 Read 2 with adapter:
 48,032 (75.8%)

 Pairs written (passing filters):
 63,398 (100.0%)

 Total basepairs processed:
 31,737,011 bp

 Read 1:
 15,867,972 bp

 Read 2:
 15,869,039 bp

 Total written (filtered):
 22,831,611 bp (71.9%)

 Read 1:
 11,374,379 bp

 Read 2:
 11,457,232 bp

=== First read: Adapter 1 ===

Sequence: ACCTGCGGARGGATCA; Type: regular 5'; Length: 16; Trimmed: 46986 times

Minimum overlap: 3 No. of allowed errors: 1-9 bp: 0; 10-16 bp: 1

Overview of removed sequences count length expect max.err error counts З 990.6 0 4 58 0.0 1 1 1 59 0.0 1 12 60 0.0 1 33 61 10 0.0 1 73 62 15 0.0 1 96 63 51 0.0 1 18 33 64 550 0.0 1 224 326 65 46191 0.0 1 18648 27543 66 143 0.0 1 60 83 67 4 0.0 1 13 68 3 0.0 1 03 70 1 0 1 0.0 71 1 0.0 1 01 73 1 0.0 1 0 1 94 1 0.0 1

=== First read: Adapter 2 ===

Sequence: AACTTTYARCAAYGGATCTC; Type: regular 3'; Length: 20; Trimmed: 45969 times

Minimum overlap: 3 No. of allowed errors: 1-9 bp: 0; 10-19 bp: 1; 20 bp: 2

Run "Identify primers and the correct orientation" again

• That looks great, we managed to remove the adapters

Showing all 4 rows.

	Forward	Complement	Reverse	RevComp
Forward_reads_5adapter	0	0	0	0
Forward_reads_3adapter	0	0	0	0
Reverse_reads_5adapter	0	0	0	0
Reverse_reads_3adapter	0	0	0	0

• If we didn't remove those sequences with 'N' bases, the result would likely look like this:

Showing all 4 rows.

	Forward	Complement	Reverse	RevComp
Forward_reads_5adapter	1060	1060	1060	1060
Forward_reads_3adapter	1060	1060	1060	1060
Reverse_reads_5adapter	1023	1023	1023	1023
Reverse_reads_3adapter	1023	1023	1023	1023

Sample (ASV) inference with DADA2

Outline

- What are the parameter options
- Things to take into account
- What are the resulting output files

ASV inference

• Two step process

- 1. Learn error model in order to remove sequencing errors
- 2. Identify real biological sequences (ASVs) using the error model and abundance information
- Based on the learnErrors() and dada() functions of the DADA2 package
- Input file: Tar package of FASTQ files containing filtered reads

 Specify if reads are paired end or single end and if they were produced with IonTorrent
 Forward and reverse reads are processed independently
- Check the original publications:

 \circ B.Callahan et al. (2016), DADA2: High resolution sample inference from illumina amplicon data \circ M. Rosen et.al (2012), Denoising PCR –amplified metagenome data

LearnErrors()

- Creates an error rate model to be used by the dada() algorithm o Infer error rates for all possible transition or transversion point mutations
- Error model is learned by alternating estimation of the error rates and inference of sample composition until they converge
 - Starts with the assumption that the error rates are the maximum (takes the most abundant sequence ("center") and assumes it's the only sequence not caused by errors)
 Compares the other sequences to the most abundant sequence
 Uses at most 10⁸ nucleotides for the error estimation
 - o Uses parametric error estimation function of loess fit of the observed error rates
- Every amplicon dataset has a different set of error rates

CSC

estimate error rates - learnErrors()

Image by Antonio Sousa, 16S rRNA gene amplicon - upstream data analysis, https://igcbioinformatics.github.io/biomeshinycourse/pages/dada2/Biodata.ptCrashCourses.html

Visualize estimated error rates

- Points = observed error rates
- Black line = estimated error rates after convergence
- Red line = Expected error rates based on the definition of the Q-scores

Dada() – Divisive Amplicon Denoising Algorithm

- The core denoising algorithm to infer ASVs using the error rate matrix and abundance information
- It's a divisive hierarchical clustering algorithm

 All unique sequences are assigned to one cluster
 Subdivide the sequences to new clusters until it fits the error model
- Removes sequencing errors in order to reveal the ASVs
 - 1. Dereplicate sequences
 - 2. Use the most abundant unique sequence as the center of the cluster
 - 3. Calculate p-values for other sequences in the cluster based on the abundance and the quality profile for each unique sequence
 - 4. Compare the p-values to the OMEGA-A parameter (10⁻⁴⁰) to decide whether the sequence was too abundant to be caused by sequencing errors
 - 5. Take the sequence with the lowest p-value smaller than the OMEGA-A parameter and use that sequence as the center of the second cluster
- Balance between

 \circ sensitivity (infer as many real ASVs as possible) \circ specificity (do not infer false positives)

CSC

denoise unique sequences (dereplicate and exclude singletons) - dada()

Image by Antonio Sousa, 16S rRNA gene amplicon - upstream data analysis, https://igcbioinformatics.github.io/biomeshinycourse/pages/dada2/Biodata.ptCrashCourses.html

Parameter options - pooling

csc

Independent

 $\circ\,\mathsf{ASVs}$ are inferred individually from each sample

- $\circ {\sf Computationally} \ {\sf easiest} \ {\sf way}$
- Pseudo-pooling
 - $\circ\,\mbox{Can}$ increase sensitivity: might find rare variants
 - Runs the individual processing twice. Uses the ASVs found in all samples in the first run as priors in the second run.
 - $\circ {\rm Computationally} \ {\rm harder}$
- The number of different ASVs found from all the samples is the same • The abundance of different ASVs in each sample can increase with pseudo-pooling
- The best choice depends on the data
- Note that singletons are not detected
 - $_{_{3^8}} \circ Sequences$ with an abundance of 1 can't form a new cluster

IonTorrent

oBAND_SIZE = 32 | By default use 16

o Uses banded Needleman-Wunsch algorithm

 Forgoes alingment in which the net number of gaps of one sequence relative to the other is higher than BAND_SIZE

○HOMOPOLYMER_GAP_PENALTY = -1 | By default use -8

Homopolymer regions are those with more than 2 repeated bases
 The cost of gaps in homopolymer regions is set to -1 for alignment
 By default gaps in homopolymer regions are treated as normal gaps

Output

- DADA class objects saved as .Rda objects • Forward and reverse objects in separate files
- Summary.txt -> Information on learnErrors() and dada() functions
 - Key parameters used
 - o Number of unique sequences in each file
 - Number of ASVs inferred from each file

\$F3D0_F_filt.fastq.gz

128 sequence variants were inferred from 1979 input unique sequences.

```
$F3D141_F_filt.fastq.gz
97 sequence variants were inferred from 1477 input unique sequences.
```


Combine paired reads to contigs with DADA2

Outline

- How paired reads are merged to contigs with DADA2
- What are the parameter options
- What are the resulting output files

Combine paired reads to contigs with DADA2

- Tries to merge each denoised pair of forward and reverse reads

 Aligns forward read with the reverse compelement of the reverse read
 Performs a Needleman-Wunsch alignment between the read pairs
- Input files

Tar package containing all the filtered forward and reverse FASTQ files
 2 denoised dada-class objects saved as .Rda files

 Generated by the "Sample inference" tool

• Based on the mergePairs() function of DADA2 library

Parameter options

csc

By default:

- Overlap region needs to be at least 12 base pairs long
- No mismatches are allowed in the overlap region
- Overhangs are not trimmed off
 - Can result when the reverse reads extend past the start of the forward reads and vice versa

Example: Paired end Illumina data

merge denoised forward and reverse reads - *mergePairs()*

Image by Antonio Sousa, 16S rRNA gene amplicon - upstream data analysis, https://igcbioinformatics.github.io/biomeshinycourse/pages/dada2/Biodata.ptCrashCourses.html CSC

Output files

- 1. Object contigs.Rda containing a list of data frames
- Summary table contigs_summary.tsv
 how many read pairs were rejected

Forward dada object	Reverse dada object	After make contigs
6976	6978	6533
5331	5350	4973
2799	2832	2595
2822	2867	2552
4151	4224	3643
6592	6628	6079
4447	4470	3968
	Forward dada object 6976 5331 2799 2822 4151 6592 4447	Forward dada objectReverse dada object69766978533153502799283228222867415142246592662844474470

Make an ASV table and remove chimeras with DADA2

Outline

- How to create an amplicon sequence variant table
- How does it look like
- What are chimeras and how to remove those
- What are the parameter options
- What are the resulting output files

Amplicon sequence variant table

- ASV table is created with the makeSequenceTable() command of DADA2 library
- Input file can be either:
 - 1. "contigs.Rda" object created when paired end reads were merged to contigs
 - 2. "dada_forward.Rda" object containing a list of dada-class objects if having single end reads
- Shows the distribution of ASVs in each sample OVery similar to OTU table
- ASV table contains still chimeras which need to be removed

ASV table

		ATGACG	CGCATG	ACTGGA	ATGACC
(sample 1	263	3389	782	85
samples	sample 2	1809	1388	877	40
Samples	sample 3	4146	2072	2365	175
	sample 4	3782	1651	476	0

Amplicon Sequence Variants - ASVs

CSC

ASVs table

construct an ASV table - makeSequenceTable()

Image by Antonio Sousa, 16S rRNA gene amplicon - upstream data analysis, https://igcbioinformatics.github.io/biomeshinycourse/pages/dada2/Biodata.ptCrashCourses.html

Remove chimeras

- Chimeras are artifact sequences formed by two or more biological sequences
 - Incomplete amplification during PCR allows subsequent PCR cycles to use a partially extended strand to bind to the template of a similar sequence
 - The partially extended strand then acts as a primer to extend and form a chimeric sequence
- Based on removeBimeradenovo() of DADA2 library
- Used to identify and remove chimeras from the ASV table

Parameter options

Consensus

o Chimeras are identified on sample-by-sample basis

o If an ASV is identified as a chimera in most of the samples, it will be removed

• Pooled

o Each sequence is compared against the more abundant sequences of all samples

How it works

- Assumes that chimeras arise from two parent sequences
 - Bimera is a chimera formed by exactly two parent sequences
- Performs Needleman-Wunsch pairwise alignments to compare less abundant sequences with the most abundant sequences
- If the less abundant sequence can be reconstructed by combining a left segment and a right segment from two more abundant sequences, the sequence is removed as chimeric

CSC

Image by Antonio Sousa, 16S rRNA gene amplicon - upstream data analysis, https://igcbioinformatics.github.io/biomeshinycourse/pages/dada2/Biodata.ptCrashCourses.html

Output files

- 1. Seqtab_nochim.Rda
- 2. Sequence_table_nochim.tsv
- 3. Summary.txt
- 4. Reads_summary.tsv

sequence_table_nochim.tsv

Showing all 19 rows.

	ASV1	ASV2	ASV3	ASV4	ASV5	ASV6	ASV7	ASV8	ASV9	ASV10	ASV11	ASV12	ASV13	ASV14	ASV15	ASV16	ASV17	ASV18
F3D0	579	345	449	430	154	470	282	184	45	158	17	217	52	104	93	80	100	69
F3D141	444	362	345	502	189	331	243	321	167	130	168	146	12	65	33	103	149	43
F3D142	289	304	158	164	180	181	163	89	89	78	42	98	103	64	12	52	116	30
F3D143	228	176	204	231	130	244	152	83	109	67	78	111	43	61	9	40	0	20
F3D144	421	277	302	357	104	353	240	41	158	155	269	146	16	81	11	113	0	45
F3D145	645	489	522	583	307	476	396	125	202	229	317	258	22	125	15	126	195	105
F3D146	325	230	254	388	179	275	214	71	113	88	178	147	4	58	25	35	0	35
F3D147	1495	1215	913	1089	453	1182	861	75	769	269	448	560	147	292	74	306	260	143
F3D148	863	729	581	853	443	872	579	507	409	198	411	432	18	199	56	270	259	117
F3D149	883	779	723	897	417	637	560	515	426	288	478	301	88	164	42	177	82	119
F3D150	317	229	399	471	169	216	238	120	241	149	61	98	64	75	19	30	0	49
F3D1	405	353	231	69	140	41	96	190	69	106	102	40	129	28	325	0	0	31
F3D2	3488	1587	1175	472	338	115	325	1211	434	609	55	41	330	107	368	17	70	190
F3D3	988	602	465	200	402	25	167	381	307	298	171	0	94	61	46	24	0	103
F3D5	327	268	284	158	151	23	123	207	178	207	61	0	48	38	87	36	57	37
F3D6	1014	674	588	404	476	17	282	261	205	242	45	0	422	106	57	0	0	39
F3D7	648	504	438	314	470	11	195	213	176	276	16	0	117	73	40	0	0	22
F3D8	272	352	349	147	582	0	130	286	113	197	19	0	145	65	45	6	0	22
F3D9	511	423	482	206	596	0	210	438	146	225	27	0	182	72	99	0	0	38

CSC

ASVs renamed for visualization purposes

Reads_summary.tsv

Showing all 19 rows.

	After make contigs	Removed chimeras
F3D0	6533	6521
F3D141	4973	4850
F3D142	2595	2521
F3D143	2552	2518
F3D144	3643	3504
F3D145	6079	5820
F3D146	3968	3879
F3D147	14233	13006
F3D148	10528	9935
F3D149	11155	10653
F3D150	4349	4240
F3D1	5028	5017
F3D2	17431	16835
F3D3	5850	5486
F3D5	3716	3716
F3D6	6865	6678
F3D7	4426	4215
F3D8	4560	4531
F3D9	6093	6016

Note: it's common that many of the ASVs are removed as chimeric, but most of the reads should not!

Summary.txt

After dada() algorithm sequence table consist of: 19 samples and 279 amplicon sequence variants

Distribution of the amplicon sequence variant's lengths: Column names are the sequence lengths

CSC

251 252 253 254 255 Counts: 1 85 186 5 2

###Removing Chimeras:###
Identified 61 bimeras out of 279 input sequences
Total amount of ASVs is: 218

Assign taxonomy with DADA2

Outline

- Methods to assign taxonomy to ASVs
- What are the parameter options
- What things to take into account
- What are the resulting output files

Assign Taxonomy

- Based on the assignTaxonomy() function of DADA2 library
- Uses the naive Bayesian classifier method of Wang to assign taxonomy across multiple ranks
 - Compares the k-mer profile of the query sequences against the reference sequences with assigned taxonomies
 - $_{\odot}$ Calculates the bootstrapping confidence score for the assignment $_{\odot}$ Uses k-mer size of 8 and 100 iterations
- There is a separate command for species level assignment called addSpecies()

Assing Taxonomy – Input files

- As input you need to give the ASV table saved as .Rda file
- Uses SILVA reference files by default if no reference files were given
 - To use other reference databases, download the DADA2 supported reference file and bring it to Chipster
 - Find DADA2 supported reference databases:
 - https://benjjneb.github.io/dada2/training.html

Parameter options

- Specify the minimum bootstrap confidence score to assign taxonomy to ASVs
 - Threshold of 50% means that at least half of the iterations should return the same assignment for each level
 - By default threshold is set to 50% which is recommended for sequences shorter than 250 bases
 - Otherwise 80% is recommended

Parameters

The minimum bootstrap confidence for assigning a taxonomic level The minimum bootstrap confidence score for assigning a taxonomic level	50
Try the reverse-complement of each sequence for classification if it is a better match to the reference sequences If set to yes, use the reverse-complement of each sequences for classification if it is a better match to the reference sequences than the original sequence.	no ~
Exact species level assignment? Do you want to assign the sequences to the species level if there is an exact match 100% identity between ASVs and sequenced reference strains?	yes ~
Combine the taxonomy and the sequence table If set to yes, it combines the taxonomy and the sequence/ASV table into	yes ~

one .tsv file, otherwise the tsv file consist only of the taxonomy table.

AddSpecies()

- If the parameter "Exact species level assignment " is set to yes, the addSpecies() function for species level assignment is used
- Based on exact (100% identity) string matching against a reference database

 Assign to species level if there is no ambiquity and all exact matches were to the same species
 100% identity matching is recommended for 16S amplicon data

 See Robert. C. Edgar, (2018), Updating the 97% identity threshold for 16S ribosomal RNA OTUS

Example:

	SILVA	tra kme	ain er (8)	RDP Naïve Bayesi Classif	bootstra 100 x an ier	Ap Min	boot=50)		kingdo	an Shyur	>HM989805 ACTGGA ACTGGA	.1.1376 Ace	tatifactor muris	s
1	ASV_	/ 4 ^{ines}	1 8m3	/ U ^{3/}	$\angle o_{k_0}$	< Fall	/ Ger.	/))))	ATGACG	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Muribaculaceae	
	ATGACG.	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Muribaculaceae	NA	•//	/	CGCATG	Bacteria	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	A
	CGCATG.	Bacteria	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Acetatifactor	•/		ACTGGA	Bacteria	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Þ
	ACTGGA	. Bacteria	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Acetatifactor	Ó								-

AssignTaxonomy()

addSpecies()

CSC

SILVA

alignment

100% match

Genus

NA

Acetatifactor

Acetatifactor

Species

NA

NA

muris

Images by Antonio Sousa, 16S rRNA gene amplicon - upstream data analysis, https://igcbioinformatics.github.io/biomeshinycourse/pages/dada2/Biodata.ptCrashCourses.html

Output files

- 1. taxonomy-assignment-matrix.Rda
- 2. taxa_seqtab_combined.tsv
 - If "Combine the taxonomy and the sequence table" is set to yes, both of those tables are combined to taxa_seqtab_combined.tsv
 - The names of the ASVs are renamed for visualization purposes. The .Rda object has still the full DNA sequences

	Kingdom	Phylum	Class	Order	Family	Genus
ASV1	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA
ASV2	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA
ASV3	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA
ASV4	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA
ASV5	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides
ASV6	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA
ASV7	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA
ASV8	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes
ASV9	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA
ASV10	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Muribaculaceae	NA

Showing the first 100 of 218 rows. View in full screen to see all rows.

Full Screen

Make a phyloseq object

Outline

- What is a phyloseq object
- How to create it
- What are the resulting output files
- How to extract information from the phyloseq object

Make a phyloseq object

- Phyloseq is an R package to import, store and analyze microbial community data • Stores all related sequencing data which makes the analyses easier
- To create a phyloseq .Rda object you need to give as input
 - 1. ASV table saved as .Rda object
 - 2. Taxonomy table saved as .Rda object

Output files

- Creates a phyloseq object called ps_nophe.Rda

 Produces a phenodata file used to specify sample information
- Summary file : ps_summary.txt
 - \circ The full DNA sequences of ASVs stored to refseq() slot

You can get those with the tool "Extract information from the phyloseq object"

```
### Phyloseq object ###
phyloseq-class experiment-level object
otu_table() OTU Table: [ 218 taxa and 19 samples ]
tax_table() Taxonomy Table: [ 218 taxa by 7 taxonomic ranks ]
refseq() DNAStringSet: [ 218 reference sequences ]
```

Phenodata table

- Table you can edit via the Chipster interface
- Use to specify and sort samples to different groups
 - Makes data analysis easier

sample	original_name	group ×	diet \times	description
F3D0		а	low	
F3D141		b	low	
F3D142		b	low	
F3D143		b	low	
F3D144		b	low	
F3D145		b	low	
F3D146		b	low	
F3D147		b	low	
F3D148		b	high	
F3D149		b	high	
F3D150		b	high	
F3D1		а	high	
F3D2		а	high	
F3D3		а	high	
F3D5		а	high	
F3D6		а	high	
F3D7		а	high	
F3D8		а	high	
F3D9		а	high	

Merge phenodata to the phyloseq object

- Store the sample information from the Phenodata table to the phyloseq object
- As input, give the phyloseq .Rda object and the Phenodata table
- Specify the column form the Phenodata table which contains the sample names / IDs

Phenodata variable with unique IDs for each community profile.

Output files

- 1. Phyloseq object ps.Rda
- 2. Summary file ps_sample_summary.txt
 - If you modify the phenodata table, you need to merge the phenodata table to the phyloseq object again!

Phyloseq (bject with sample information combined###
phyloseq-clas: otu_table() sample_data() tax_table() refseq()	s experiment-level object OTU Table: [218 taxa and 19 samples] Sample Data: [19 samples by 5 sample variables] Taxonomy Table: [218 taxa by 7 taxonomic ranks] DNAStringSet: [218 reference sequences]
### Sample nam	nes ###
[1] "F3D0" [9] "F3D148" [17] "F3D7"	"F3D141" "F3D142" "F3D143" "F3D144" "F3D145" "F3D146" "F3D147" "F3D149" "F3D150" "F3D1" "F3D2" "F3D3" "F3D5" "F3D6" "F3D8" "F3D9"
### Sample va	riables ###
<pre>[1] "sample" [5] "descript:</pre>	"original_name" "chiptype" "group" ion"

Extract information from the phyloseq object

- Used to extract information stored to the phyloseq object
- Give a phyloseq object .Rda as input

 $_{\odot}$ Can be used to access information after the DADA2 or Mothur based workflow

Parameters

Do you want to extract the OTU table	no	~
Do you want to extract the taxonomy table	no	~
Do you want to extract the full DNA sequences stored to refseq	no	~
Do you want to extract the sample information	no	~

Full DNA sequences stored in the refseq() slot of the Phyloseq object

Get access to the full sequences of each ASV

o Can be used to merge the found ASVs with other datasets and index into reference databases

CSC

Full Screen

Showing the first 100 of 218 rows. View in full screen to see all rows.

ASV1 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGCAGGCGGAAGATCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCGAGCCGTTGA ASV2 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGCAGGCGGACTCTCAAGTCAGCGGGCCAAATCGCGGGGCTCAACCCCCGTTCCGCCGTTG ASV3 TACGGAGGATGCGAGCGTTATCCGGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGGCTGTTAAGTCAGCGGTCAAATGTCGGGGGCTCAACCCCCGGCCTGCCGTTGA ASV4 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGGCTTTTAAGTCAGCGGTAAAAATTCGGGGGCTCAACCCCGTCCGGCCGTTGA ASV5 TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGATTGTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGA ASV6 TACGGAGGATGCGAGCGTTATCCGGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGCCTGCCAAGTCAGCGGTAAAATTGCGGGGGCTCAACCCCGTACAGCCGTTGA ASV7 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGGATGCCAAGTCAGCGGTAAAAAAGCGGTGCTCAACGCCGTCGAGCCGTTG/ ASV8 TACGGAGGATTCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTTCGATAAGTTAGAGGTGAAATCCCGGGGCTCAACTCCGGCACTGCCTCTGA ASV9 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGATCGTTAAGTCAGTGGTCAAATTGAGGGGGCTCAACCCCTTCCCGCCATTGA/ ASV10 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGGATGTCAAGTCAGCGGTAAAATTGTGGAGCTCAACTCCATCGAGCCGTTGAA ASV11 TACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGA ASV12 TACGGAGGATGCGAGCGTTATCCGGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGCCTGCCAAGTCAGCGGGTAAAATTGCGGGGGCTCAACCCCGTACAGCCGTTGA ASV13 TACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCCGTAAAGGGAACGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGTAGTGCATTGGA ASV14 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGGATGCCAAGTCAGCGGTAAAAATGCGGTGCTCAACGCCGTCGAGCCGTTGA TACGTAGGGGGGCAAGCGTTATCCGGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCAGCGCAAGTCTGGAGTGAAATGCCGGGGCCCAACCCCGGAACTGCTTTG ASV15 ASV16 ASV17 TACGGAGGATGCGAGCGTTATCCGGGATTTATTGGGTTTAAAGGGTGCGCAGGCGGGATGCCAAGTCAGCGGTCAAATTTCGGGGGCTCAACCCCGACCTGCCGTTG/ ASV18 TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTCCGTTAAGTCAGCGGTAAAATTGCGGGGGCTCAACCCCGTCGAGCCGTTGA ASV19 TACGTAGGGAGCGAGCGTTATCCGGATTTATTGGGTGTAAAGGGTGCGTAGGCGGTAATACAGGTCTTTGGTATAAGCCCGAAGCTTAACTTCGGTAAGCCCAGAGAA

IonTorrent or ITS data with DADA2

Outline

• Main parts of ITS and IonTorrent analysis with DADA2

CSC

- What are the differences compared to Illumina data
- Things to take into account

Things to note

- Use cutadapt to remove the adapter/primer sequences
- When filtering and trimming your reads, use "Remove reads which are shorter than this" instead of truncation

 If the read length varies
- ITS

o Download the UNITE reference files from the website and give as input

• IonTorrent:

O Use parameter IonTorrent in tool sample inference

 O Uses specific denoising algorithm options recommended for IonTorrent data
 O HOMOPOLYMER_GAP_PENALTY = -1
 O BANDSIZE= 32
New features for microbial community analyses in **Chipster 01.2023**

Notes

- DADA workflow installed, as well as Cutadapt
- Tool "Extract information from a phyloseq object"
- Phyloseq, FastQC and MultiQC versions updated
- Alpha diversity estimate creates a boxplot with Wilcoxon rank sum test
- Mothur updated to new version 1.48.0 • Not using group file anymore