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Talk outline

Assessing measurement precision

Characterization of established RNA-Seq pipelines

Beyond established approaches

Highly expressed transcripts and read depth

Studying differential signal readout by spike-in mixtures



NGS - 'new' measurement technology

Progress in science depends on new techniqgues,
new discoveries, and new ideas ...

... probably in that order.

Sydney Brenner, 2002 Nobel Prize Winner



Accuracy vs precision

Accurate Biased

Precise

Noisy

http://withfriendship.com



RNA-Seq precision

Sequencing of randomly sampled fragments!

Little attention to measurement precision

— initial observations of overall good correlation
(Marioni et al. 2008, Wilhelm et al. 2008)

Correlation coefficient can be dominated by extreme values

— drawback of high dynamic range in RNA-Seq



Assessing expression reproducibility

Correlation[lin]: 97.6%
Correlation[log/0]: 97.5%
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Assessing expression reproducibility

Correlation[lin]: 91.9%
Correlation[log/0]: 90.5%
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Assessing expression reproducibility

Correlation[lin]: 47.3%
Correlation[log/0]: 26.9%
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Characterization of established RNA-Seq pipelines



Flood of read mapping tools
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Simple approach - eg. Bowtie / RPKM

- direct mapping to the transcript sequences

- use of the unique reads for assessing expression levels (RPKM)
— exploits only ~ 1 in 5 mapped reads

Bowtie (transcriptome)
Replicate Reads | Mapped reads Align’s Unique reads
1 340 168 (50%) 112 36 (11%)
2 341 167 (49%) 776 35 (10%)
3 311 152 (49%) 699 32 (10%)
Total 093 | 487(49%) 2237 103(10%)
Quantification by - unique reads

(human cell line sample, 50 bp ABI SOLID 3+)



More advanced tools

Read - centric: assign probability for each read/fragment to one
transcript by maximazing the joined likelihood of read alignments
based on the distribution of transcript fragments — estimating the

transcript expression

Exon - centric: considers the read abundance on an exonic
segment as the cumulative abundance of all transcript isoforms

Huang et al. RECOMB 2012



More advanced tools
ALEXA - Seq

comprehensive target library from
external databases

Griffith et al. 2010

NEUMA

expected read counts for all
possible isoforms

Lee et al. 2010

TopHat + Cufflinks

can construct completely de novo

gene models
Trapnell et al. 2009, 2010, 2012

BitSeq

works directly on transcript expression

estimates
Glaus et al. 2012

Expression level
(log, average coverage)
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Characterization of the TopHat pipeline

- mapping to the genomic sequence

- de novo splice junctions discovery for building gene models

- allows use of all mapped reads for expression estimates

Bowtie (transcriptome) TopHat (genome)
Replicate Reads | Mapped reads Align’s Unique reads | Mapped reads Align’s
1 340 168 (50%) 712 36 (11%) 172 (51%) 241
2 341 167 (49%) 776 35 (10%) 170 (50%) 238
3 311 152 (49%) 699 32 (10%) 155 (50%) 217
Total 993 487 (49%) 2237  (103})10%) 497 (50%) (@
Quantification by unﬁe reads alignments



TopHat + Cufflinks +/- models
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TopHat + Cufflinks +/- models
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Exploiting gene models at the alignment stage

gene
models
(GTF)

RNA-Seq
reads

transcript o
r igner
e S o apal
I 7
TopHat (genome) Bowtie (combined)
Replicate Reads | Mapped reads Align’s Junct | Mapped reads Align’s Junct
| 340 172 (51%) 241 18 168 (50%) 249 45
2 341 170 (50%) 238 17 167 (49%) 247 45
> 311 155 (50%) 217 16 152 (49%) 22.5 41
Total 993 | 497 (50%) 695 (51) 487 (49%) 721 (131)
Quantification by alignments alignments

Combined solution is much more sensitive in the identification of known junctions.



Exploiting gene models at the alignment stage

Intron

pre-mRNA
Exon

* most genes have

alternative splice variants

* most reads map to more than

one splicing variant

Short read is split by » often splice-junctions identify

intron when aligning - o _
to reference Genome R ;J a specific splicing variant
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Exploiting gene models at the alignment stage

gene
models
(GTF)

RNA-Seq
reads

e read aligner (SAM) sxpression
s‘(*:'::::‘)’s H[(eg. Bov%tie) MapAl H Cufflinks j—> profiles
I 7
TopHat (genome) Bowtie (combined)

Replicate Reads | Mapped reads Align’s Junct | Mapped reads Align’s Junct

1 340 172 (51%) 241 18 168 (50%) 249 45

2 341 170 (50%) 238 17 167 (49%) 247 45

> 311 155 (50%) 217 16 152 (49%) 22.5 41

Total 993 | 497 (50%) 695 (51) 487 (49%) 721 (131)

Quantification by alignments alignments

Combined solution is much more sensitive in the identification of known junctions.

These often play a key role in identifying the expression of a particular spliceform.



Reproducibility of quantitative expression profiling

Transcripts Bowtie TopHat+ Cuff- TopHat+Cuff- Bowtie+ Cuff-
links links + model links + model

identified 68,809 (49%) 503,286 (-) 87,649 (63%) 101,169 (72%)
reliable 24,081 (17%) 35,405 (=)  39,116((28%)) 56,980

reliable % 35% 7% 44% 57%
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tabaj, PP et al. (2011) Bioinformatics
tabaj, PP et al. (2012) Frontiers in Genetics



Effects of highly expressed transcripts
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Standard error

Effects of highly expressed transcripts
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Number of transcripts [thousands]

Impact of read depth
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Dominance of the sampling effect
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RNA-Seq vs arrays
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Summary and outlook

Exploiting gene models already at the alignment stage -
~ 100,000 spliceforms identified (72% of all known)

~ 57,000 measured reliably (41%)
— an improvement of 50% !

Standard microarrays can reliably measure > 68,000 transcripts

— 20% more than RNA-Seq ...

A doubling of the sequencing depth
- changes little for the number of identified transcripts

- adds 5% to the number of transcripts that can be quantified reliably,
with diminishing returns for higher sequencing depths

(... 75% of read alignments hit < 7% highly expressed transcripts! )



Falling costs

Sequencing Cost per Genome: 2001 to 2020
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Need to work smarter, not harder

Sequencing Progress vs Compute and Storage
Moore’s and Kryder's Laws fall far behind

Sequencing (kbases/day)

100000000 17— = Microprocessor (MIPS)
Compact HDD storage capacity (MB) )
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A doubling of processing
power every 14 months!

A doubling of storage
capacity every 13 months!

A doubling of sequencing
output every 5 months!

Sending data oversea by post
faster than
transferring via network !!!



Summary

- combining complementary strengths
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13th Annual International Conference on
‘ A M DA Critical Assessment of Massive Data Analysis

Boston, United States | July 11-12, 2014

Challenges:

This year, CAMDA's scientific committee

set up three challenges to integrate Chris Sander ~ Temple F. Smith Jun Wang

. . Abstract Submission Deadline 20 May 2014
multi-track -omics data:
1. dual dose response profiles for 14 unknown PO SO (RIS 25 May 2014
Acceptance Notification 30 May 2014
and 2 known compounds from the InnoMed P 4
. Early Registration Closes 1 Jun 2014
PredTox project of the EU FP7 program,
_ CAMDA Conference 11-12 Jul 2014
2. selected cancers from International Cancer
ISMB 2014 Conference 12-15 Jul 2014
Genome Consortium (ICGC), and o
Full Paper Submission 25 Aug 2014

3. the prediction of drug compatibility from an _
Organizers

extremely large toxicogenomic data set Djork-Arné Clevert, JKU Linz, Austria
Joaquin Dopazo, CIPF, Spain o° ...
Sepp Hochreiter, JKU Linz, Austria | S M B

Lan Hu, Dana-Farber Cancer Institute, U.S.A. 2 0O 14
David Kreil, Boku University, Austria @

@
http://www.camda.info (coming soon) Simon Lin, Marshfield Clinic, U.S.A. Teee ®

For additional information see:


http://www.camda.info/
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